Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Eur J Hum Genet ; 26(1): 54-63, 2018 01.
Article in English | MEDLINE | ID: mdl-29209020

ABSTRACT

Genotype-first combined with reverse phenotyping has shown to be a powerful tool in human genetics, especially in the era of next generation sequencing. This combines the identification of individuals with mutations in the same gene and linking these to consistent (endo)phenotypes to establish disease causality. We have performed a MIP (molecular inversion probe)-based targeted re-sequencing study in 3,275 individuals with intellectual disability (ID) to facilitate a genotype-first approach for 24 genes previously implicated in ID.Combining our data with data from a publicly available database, we confirmed 11 of these 24 genes to be relevant for ID. Amongst these, PHIP was shown to have an enrichment of disruptive mutations in the individuals with ID (5 out of 3,275). Through international collaboration, we identified a total of 23 individuals with PHIP mutations and elucidated the associated phenotype. Remarkably, all 23 individuals had developmental delay/ID and the majority were overweight or obese. Other features comprised behavioral problems (hyperactivity, aggression, features of autism and/or mood disorder) and dysmorphisms (full eyebrows and/or synophrys, upturned nose, large ears and tapering fingers). Interestingly, PHIP encodes two protein-isoforms, PHIP/DCAF14 and NDRP, each involved in neurodevelopmental processes, including E3 ubiquitination and neuronal differentiation. Detailed genotype-phenotype analysis points towards haploinsufficiency of PHIP/DCAF14, and not NDRP, as the underlying cause of the phenotype.Thus, we demonstrated the use of large scale re-sequencing by MIPs, followed by reverse phenotyping, as a constructive approach to verify candidate disease genes and identify novel syndromes, highlighted by PHIP haploinsufficiency causing an ID-overweight syndrome.


Subject(s)
Genetic Testing/methods , Genotype , Intellectual Disability/genetics , Intracellular Signaling Peptides and Proteins/genetics , Overweight/genetics , Adolescent , Adult , Child , Female , Genetic Testing/standards , Haploinsufficiency , Humans , Male , Reproducibility of Results , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards , Syndrome
2.
Nat Genet ; 47(6): 582-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25961944

ABSTRACT

To assess the relative impact of inherited and de novo variants on autism risk, we generated a comprehensive set of exonic single-nucleotide variants (SNVs) and copy number variants (CNVs) from 2,377 families with autism. We find that private, inherited truncating SNVs in conserved genes are enriched in probands (odds ratio = 1.14, P = 0.0002) in comparison to unaffected siblings, an effect involving significant maternal transmission bias to sons. We also observe a bias for inherited CNVs, specifically for small (<100 kb), maternally inherited events (P = 0.01) that are enriched in CHD8 target genes (P = 7.4 × 10(-3)). Using a logistic regression model, we show that private truncating SNVs and rare, inherited CNVs are statistically independent risk factors for autism, with odds ratios of 1.11 (P = 0.0002) and 1.23 (P = 0.01), respectively. This analysis identifies a second class of candidate genes (for example, RIMS1, CUL7 and LZTR1) where transmitted mutations may create a sensitized background but are unlikely to be completely penetrant.


Subject(s)
Autistic Disorder/genetics , Codon, Nonsense , DNA Copy Number Variations , Exome , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Male , Polymorphism, Single Nucleotide , Risk
3.
Nature ; 515(7526): 216-21, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25363768

ABSTRACT

Whole exome sequencing has proven to be a powerful tool for understanding the genetic architecture of human disease. Here we apply it to more than 2,500 simplex families, each having a child with an autistic spectrum disorder. By comparing affected to unaffected siblings, we show that 13% of de novo missense mutations and 43% of de novo likely gene-disrupting (LGD) mutations contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding de novo mutations contribute to about 30% of all simplex and 45% of female diagnoses. Almost all LGD mutations occur opposite wild-type alleles. LGD targets in affected females significantly overlap the targets in males of lower intelligence quotient (IQ), but neither overlaps significantly with targets in males of higher IQ. We estimate that LGD mutation in about 400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar number of genes vulnerable to contributory missense mutation. LGD targets in the joint class overlap with published targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes and embryonically expressed genes. Most of the significance for the latter comes from affected females.


Subject(s)
Child Development Disorders, Pervasive/genetics , Genetic Predisposition to Disease/genetics , Mutation/genetics , Open Reading Frames/genetics , Child , Cluster Analysis , Exome/genetics , Female , Genes , Humans , Intelligence Tests , Male , Reproducibility of Results
4.
Nat Genet ; 46(10): 1063-71, 2014 10.
Article in English | MEDLINE | ID: mdl-25217958

ABSTRACT

Copy number variants (CNVs) are associated with many neurocognitive disorders; however, these events are typically large, and the underlying causative genes are unclear. We created an expanded CNV morbidity map from 29,085 children with developmental delay in comparison to 19,584 healthy controls, identifying 70 significant CNVs. We resequenced 26 candidate genes in 4,716 additional cases with developmental delay or autism and 2,193 controls. An integrated analysis of CNV and single-nucleotide variant (SNV) data pinpointed 10 genes enriched for putative loss of function. Follow-up of a subset of affected individuals identified new clinical subtypes of pediatric disease and the genes responsible for disease-associated CNVs. These genetic changes include haploinsufficiency of SETBP1 associated with intellectual disability and loss of expressive language and truncations of ZMYND11 in individuals with autism, aggression and complex neuropsychiatric features. This combined CNV and SNV approach facilitates the rapid discovery of new syndromes and genes involved in neuropsychiatric disease despite extensive genetic heterogeneity.


Subject(s)
Autistic Disorder/genetics , DNA Copy Number Variations , Developmental Disabilities/genetics , Genetic Predisposition to Disease/genetics , Base Sequence , Carrier Proteins/genetics , Cell Cycle Proteins , Child , Chromosome Mapping , Co-Repressor Proteins , Comparative Genomic Hybridization , DNA-Binding Proteins , Female , Genetic Association Studies , Haploinsufficiency/genetics , Humans , Intellectual Disability/genetics , Male , Molecular Sequence Data , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
5.
Cell ; 158(2): 263-276, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24998929

ABSTRACT

Autism spectrum disorder (ASD) is a heterogeneous disease in which efforts to define subtypes behaviorally have met with limited success. Hypothesizing that genetically based subtype identification may prove more productive, we resequenced the ASD-associated gene CHD8 in 3,730 children with developmental delay or ASD. We identified a total of 15 independent mutations; no truncating events were identified in 8,792 controls, including 2,289 unaffected siblings. In addition to a high likelihood of an ASD diagnosis among patients bearing CHD8 mutations, characteristics enriched in this group included macrocephaly, distinct faces, and gastrointestinal complaints. chd8 disruption in zebrafish recapitulates features of the human phenotype, including increased head size as a result of expansion of the forebrain/midbrain and impairment of gastrointestinal motility due to a reduction in postmitotic enteric neurons. Our findings indicate that CHD8 disruptions define a distinct ASD subtype and reveal unexpected comorbidities between brain development and enteric innervation.


Subject(s)
Child Development Disorders, Pervasive/genetics , Child Development Disorders, Pervasive/physiopathology , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Adolescent , Amino Acid Sequence , Animals , Brain/growth & development , Brain/pathology , Child , Child Development Disorders, Pervasive/classification , Child Development Disorders, Pervasive/pathology , Child, Preschool , DNA-Binding Proteins/metabolism , Female , Gastrointestinal Tract/innervation , Gastrointestinal Tract/physiopathology , Humans , Macaca mulatta , Male , Megalencephaly/pathology , Molecular Sequence Data , Mutation , Sequence Alignment , Transcription Factors/metabolism , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
6.
Nat Genet ; 46(4): 380-4, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24531329

ABSTRACT

Despite the high heritability of autism spectrum disorders (ASD), characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests or activities, a genetic diagnosis can be established in only a minority of patients. Known genetic causes include chromosomal aberrations, such as the duplication of the 15q11-13 region, and monogenic causes, as in Rett and fragile-X syndromes. The genetic heterogeneity within ASD is striking, with even the most frequent causes responsible for only 1% of cases at the most. Even with the recent developments in next-generation sequencing, for the large majority of cases no molecular diagnosis can be established. Here, we report ten patients with ASD and other shared clinical characteristics, including intellectual disability and facial dysmorphisms caused by a mutation in ADNP, a transcription factor involved in the SWI/SNF remodeling complex. We estimate this gene to be mutated in at least 0.17% of ASD cases, making it one of the most frequent ASD-associated genes known to date.


Subject(s)
Abnormalities, Multiple/genetics , Child Development Disorders, Pervasive/genetics , Chromosomal Proteins, Non-Histone/genetics , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Transcription Factors/genetics , Base Sequence , Codon, Nonsense/genetics , Exome/genetics , Frameshift Mutation/genetics , Gene Components , Humans , Molecular Sequence Data , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...