Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 773, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937521

ABSTRACT

Distinct Natural Killer (NK)-like CD57+ and PD-1+ CD8+ exhausted-like T cell populations (Tex) have both been linked to beneficial immunotherapy response in autoimmune type 1 diabetes (T1D) patients. The origins and relationships between these cell types are poorly understood. Here we show that while PD-1+ and CD57+ Tex populations are epigenetically similar, CD57+ Tex cells display unique increased chromatin accessibility of inhibitory Killer Cell Immunoglobulin-like Receptor (iKIR) and other NK cell genes. PD-1+ and CD57+ Tex also show reciprocal expression of Inhibitory Receptors (IRs) and iKIRs accompanied by chromatin accessibility of Tcf1 and Tbet transcription factor target sites, respectively. CD57+ Tex show unappreciated gene expression heterogeneity and share clonal relationships with PD-1+ Tex, with these cells differentiating along four interconnected lineage trajectories: Tex-PD-1+, Tex-CD57+, Tex-Branching, and Tex-Fluid. Our findings demonstrate new relationships between Tex-like populations in human autoimmune disease and suggest that modulating common precursor populations may enhance response to autoimmune disease treatment.


Subject(s)
CD8-Positive T-Lymphocytes , Diabetes Mellitus, Type 1 , Killer Cells, Natural , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/genetics , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , CD57 Antigens/metabolism , Cell Lineage/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Female , Male , Adult
2.
Mol Ecol Resour ; 24(1): e13801, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37186213

ABSTRACT

Genome assembly can be challenging for species that are characterized by high amounts of polymorphism, heterozygosity, and large effective population sizes. High levels of heterozygosity can result in genome mis-assemblies and a larger than expected genome size due to the haplotig versions of a single locus being assembled as separate loci. Here, we describe the first chromosome-level genome for the eastern oyster, Crassostrea virginica. Publicly released and annotated in 2017, the assembly has a scaffold N50 of 54 mb and is over 97.3% complete based on BUSCO analysis. The genome assembly for the eastern oyster is a critical resource for foundational research into molluscan adaptation to a changing environment and for selective breeding for the aquaculture industry. Subsequent resequencing data suggested the presence of haplotigs in the original assembly, and we developed a post hoc method to break up chimeric contigs and mask haplotigs in published heterozygous genomes and evaluated improvements to the accuracy of downstream analysis. Masking haplotigs had a large impact on SNP discovery and estimates of nucleotide diversity and had more subtle and nuanced effects on estimates of heterozygosity, population structure analysis, and outlier detection. We show that haplotig masking can be a powerful tool for improving genomic inference, and we present an open, reproducible resource for the masking of haplotigs in any published genome.


Subject(s)
Crassostrea , Animals , Crassostrea/genetics , Genomics/methods , Sequence Analysis, DNA , Polymorphism, Genetic , Genome Size
3.
Bioinspir Biomim ; 18(5)2023 08 31.
Article in English | MEDLINE | ID: mdl-37487501

ABSTRACT

Ram suspension-feeding fish, such as herring, use gill rakers to separate small food particles from large water volumes while swimming forward with an open mouth. The fish gill raker function was tested using 3D-printed conical models and computational fluid dynamics simulations over a range of slot aspect ratios. Our hypothesis predicting the exit of particles based on mass flow rates, dividing streamlines (i.e. stagnation streamlines) at the slots between gill rakers, and particle size was supported by the results of experiments with physical models in a recirculating flume. Particle movement in suspension-feeding fish gill raker models was consistent with the physical principles of lateral displacement arrays ('bump arrays') for microfluidic and mesofluidic separation of particles by size. Although the particles were smaller than the slots between the rakers, the particles skipped over the vortical region that was generated downstream from each raker. The particles 'bumped' on anterior raker surfaces during posterior transport. Experiments in a recirculating flume demonstrate that the shortest distance between the dividing streamline and the raker surface preceding the slot predicts the maximum radius of a particle that will exit the model by passing through the slot. This theoretical maximum radius is analogous to the critical separation radius identified with reference to the stagnation streamlines in microfluidic and mesofluidic devices that use deterministic lateral displacement and sieve-based lateral displacement. These conclusions provide new perspectives and metrics for analyzing cross-flow and cross-step filtration in fish with applications to filtration engineering.


Subject(s)
Feeding Behavior , Gills , Animals , Biomimetics , Fishes , Filtration , Particle Size
4.
Front Genet ; 14: 1054558, 2023.
Article in English | MEDLINE | ID: mdl-36741318

ABSTRACT

Disease tolerance, a host's ability to limit damage from a given parasite burden, is quantified by the relationship between pathogen load and host survival or reproduction. Dermo disease, caused by the protozoan parasite P. marinus, negatively impacts survival in both wild and cultured eastern oyster (C. virginica) populations. Resistance to P. marinus has been the focus of previous studies, but tolerance also has important consequences for disease management in cultured and wild populations. In this study we measured dermo tolerance and evaluated global expression patterns of two sensitive and two tolerant eastern oyster families experimentally challenged with distinct doses of P. marinus (0, 106, 107, and 108 parasite spores per gram wet weight, n = 3-5 individuals per family per dose). Weighted Gene Correlation Network Analysis (WGCNA) identified several modules correlated with increasing parasite dose/infection intensity, as well as phenotype. Modules positively correlated with dose included transcripts and enriched GO terms related to hemocyte activation and cell cycle activity. Additionally, these modules included G-protein coupled receptor, toll-like receptor, and tumor necrosis factor pathways, which are important for immune effector molecule and apoptosis activation. Increased metabolic activity was also positively correlated with treatment. The module negatively correlated with infection intensity was enriched with GO terms associated with normal cellular activity and growth, indicating a trade-off with increased immune response. The module positively correlated with the tolerant phenotype was enriched for transcripts associated with "programmed cell death" and contained a large number of tripartite motif-containing proteins. Differential expression analysis was also performed on the 108 dosed group using the most sensitive family as the comparison reference. Results were consistent with the network analysis, but signals for "programmed cell death" and serine protease inhibitors were stronger in one tolerant family than the other, suggesting that there are multiple avenues for disease tolerance. These results provide new insight for defining dermo response traits and have important implications for applying selective breeding for disease management.

5.
BMC Genomics ; 23(1): 201, 2022 Mar 12.
Article in English | MEDLINE | ID: mdl-35279090

ABSTRACT

BACKGROUND: Apoptosis plays important roles in a variety of functions, including immunity and response to environmental stress. The Inhibitor of Apoptosis (IAP) gene family of apoptosis regulators is expanded in molluscs, including eastern, Crassostrea virginica, and Pacific, Crassostrea gigas, oysters. The functional importance of IAP expansion in apoptosis and immunity in oysters remains unknown. RESULTS: Phylogenetic analysis of IAP genes in 10 molluscs identified lineage specific gene expansion in bivalve species. Greater IAP gene family expansion was observed in C. virginica than C. gigas (69 vs. 40), resulting mainly from tandem duplications. Functional domain analysis of oyster IAP proteins revealed 3 novel Baculoviral IAP Repeat (BIR) domain types and 14 domain architecture types across gene clusters, 4 of which are not present in model organisms. Phylogenetic analysis of bivalve IAPs suggests a complex history of domain loss and gain. Most IAP genes in oysters (76% of C. virginica and 82% of C. gigas), representing all domain architecture types, were expressed in response to immune challenge (Ostreid Herpesvirus OsHV-1, bacterial probionts Phaeobacter inhibens and Bacillus pumilus, several Vibrio spp., pathogenic Aliiroseovarius crassostreae, and protozoan parasite Perkinsus marinus). Patterns of IAP and apoptosis-related differential gene expression differed between the two oyster species, where C. virginica, in general, differentially expressed a unique set of IAP genes in each challenge, while C. gigas differentially expressed an overlapping set of IAP genes across challenges. Apoptosis gene expression patterns clustered mainly by resistance/susceptibility of the oyster host to immune challenge. Weighted Gene Correlation Network Analysis (WGCNA) revealed unique combinations of transcripts for 1 to 12 IAP domain architecture types, including novel types, were significantly co-expressed in response to immune challenge with transcripts in apoptosis-related pathways. CONCLUSIONS: Unprecedented diversity characterized by novel BIR domains and protein domain architectures was observed in oyster IAPs. Complex patterns of gene expression of novel and conserved IAPs in response to a variety of ecologically-relevant immune challenges, combined with evidence of direct co-expression of IAP genes with apoptosis-related transcripts, suggests IAP expansion facilitates complex and nuanced regulation of apoptosis and other immune responses in oysters.


Subject(s)
Apicomplexa , Crassostrea , Vibrio , Animals , Apoptosis/genetics , Phylogeny
6.
Dev Comp Immunol ; 129: 104339, 2022 04.
Article in English | MEDLINE | ID: mdl-34998862

ABSTRACT

The protozoan parasite Perkinsus marinus causes Dermo disease in eastern oysters, Crassostrea virginica, and can suppress apoptosis of infected hemocytes using incompletely understood mechanisms. This study challenged hemocytes in vitro with P. marinus for 1 h in the presence or absence of caspase inhibitor Z-VAD-FMK or Inhibitor of Apoptosis protein (IAP) inhibitor GDC-0152. Hemocytes exposure to P. marinus significantly reduced granulocyte apoptosis, and pre-incubation with Z-VAD-FMK did not affect P. marinus-induced apoptosis suppression. Hemocyte pre-incubation with GDC-0152 prior to P. marinus challenge further reduced apoptosis of granulocytes with engulfed parasite, but not mitochondrial permeabilization. This suggests P. marinus-induced apoptosis suppression may be caspase-independent, affect an IAP-involved pathway, and occur downstream of mitochondrial permeabilization. P. marinus challenge stimulated hemocyte differential expression of oxidation-reduction, TNFR, and NF-kB pathways. WGCNA analysis of P. marinus expression in response to hemocyte exposure revealed correlated protease, kinase, and hydrolase expression that could contribute to P. marinus-induced apoptosis suppression.


Subject(s)
Crassostrea/parasitology , Amino Acid Chloromethyl Ketones , Animals , Apicomplexa , Apoptosis , Caspases , Hemocytes/parasitology , Host-Parasite Interactions , Inhibitor of Apoptosis Proteins , NF-kappa B , Oxidation-Reduction , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...