Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
ACS Appl Mater Interfaces ; 16(19): 25529-25539, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698765

ABSTRACT

Two-dimensional (2D) hybrid organic-inorganic perovskite (HOIP) crystals show promise as scintillating materials for wide-energy radiation detection, outperforming their three-dimensional counterparts. In this study, we synthesized single crystals of (PEA2-xBZAx)PbBr4 (x ranging from 0.1 to 2), utilizing phenethylammonium (C6H5CH2CH2NH3+) and benzylammonium (C6H5CH2NH3+) cations. These materials exhibit favorable optical and scintillation properties, rendering them suitable for high light yield (LY) and fast-response scintillators. Our investigation, employing various techniques such as X-ray diffraction (XRD), photoluminescence (PL), time-resolved (TR) PL, Raman spectroscopy, radioluminescence (RL), thermoluminescence (TL), and scintillation measurements, unveiled lattice strain induced by dual-organic cations in powder X-ray diffraction. Density functional theory analysis demonstrated a maximal 0.13 eV increase in the band gap with the addition of BZA cation addition. Notably, the largest Stokes shift of 0.06 eV was observed in (BZA)2PbBr4. The dual-organic cation crystals displayed >80% fast component scintillation decay time, which is advantageous for the scintillating process. Furthermore, we observed a dual-organic cations-induced enhancement of electron-hole transfer efficiency by up to 60%, with a contribution of >70% to the fast component of scintillation decay. The crystal with the lowest BZA concentration, (PEA1.9BZA0.1)PbBr4, demonstrated the highest LYs of 14.9 ± 1.5 ph/keV at room temperature. Despite a 55-70% decrease in LY for BZA concentrations >5%, simultaneous reductions in scintillation decay time (12-32%) may work for time-of-flight positron emission tomography and photon-counting computed tomography. Our work underscores the crucial role of dual-organic cations in advancing our understanding of 2D-HOIP crystals for materials science and radiation detection applications.

2.
J Phys Chem Lett ; 15(14): 3713-3720, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38546293

ABSTRACT

The remarkable brightness and rapid scintillation observed in perovskite single crystals (SCs) become even more striking when they are operated at cryogenic temperatures. In this study, we present advancements in enhancing the scintillation properties of methylammonium lead bromide (MAPbBr3) SCs by optimizing the synthesis process. We successfully synthesized millimeter-sized MAPbBr3 SCs with bright green luminescence under UV light. However, both MAPbBr3 (Control-1M and THF-0.4M) SCs display notable radioluminescence exclusively at low temperatures due to their phase transitions. Notably, the THF-0.4M SCs exhibit a remarkable improvement in radioluminescence light yield, surpassing Control-1M SCs more than 2-fold. Further, THF-0.4M SCs demonstrate an ultrafast decay component of 0.52 ns (82.2%) and a slower component of 1.80 ns (17.8%), contributing to a rapid scintillation response at low temperatures. Therefore, the amalgamation of ultrafast decay components and improved radioluminescence light yield equips THF-0.4M SCs to emerge as a top choice for perovskite scintillators for X-ray timing applications.

3.
Molecules ; 28(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37570871

ABSTRACT

Cyclic dipeptides with two intramolecular peptide bonds forming a six-membered 2,5-diketopiperazine ring are gaining significant attention due to their biological and chemical properties. Small changes in the local geometry of such molecules (from cis to trans) can lead to significant structural differences. This work presents the results of a study of cyclo(l-Cys-d-Cys), a dipeptide comprising two cysteine molecules in opposite chiral configurations, with the functional groups situated at both sides of the diketopiperazine ring. X-ray diffraction (XRD) experiment revealed that the molecule crystallises in the P-1 space group, which includes the centre of inversion. The IR and Raman vibrational spectra of the molecule were acquired and interpreted in terms of the potential energy distribution (PED) according to the results of density functional theory (DFT) calculations. The DFT-assisted analysis of energy frameworks for the hydrogen bond network within molecular crystals was performed to support the interpretation of X-ray structural data. The optimisation of the computational model based on three-molecule geometry sections from the crystallographic structure, selected to appropriately reflect the intermolecular interactions responsible for the formation of 1D molecular tapes in cyclo(l-Cys-d-Cys) crystal, allowed for better correspondence between theoretical and experimental vibrational spectra. This work can be considered the first complete structural characterisation of cyclo(l-Cys-d-Cys), complemented via vibrational spectroscopy results with full band assignment aided with the use of the DFT method.

4.
J Phys Chem C Nanomater Interfaces ; 127(22): 10737-10747, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37313122

ABSTRACT

Quantum-well (QW) hybrid organic-inorganic perovskite (HOIP) crystals, e.g., A2PbX4 (A = BA, PEA; X = Br, I), demonstrated significant potentials as scintillating materials for wide energy radiation detection compared to their individual three-dimensional (3D) counterparts, e.g., BPbX3 (B = MA). Inserting 3D into QW structures resulted in new structures, namely A2BPb2X7 perovskite crystals, and they may have promising optical and scintillation properties toward higher mass density and fast timing scintillators. In this article, we investigate the crystal structure as well as optical and scintillation properties of iodide-based QW HOIP crystals, A2PbI4 and A2MAPb2I7. A2PbI4 crystals exhibit green and red emission with the fastest PL decay time <1 ns, while A2MAPb2I7 crystals exhibit a high mass density of >3.0 g/cm3 and tunable smaller bandgaps <2.1 eV resulting from quantum and dielectric confinement. We observe that A2PbI4 and PEA2MAPb2I7 show emission under X- and γ-ray excitations. We further observe that some QW HOIP iodide scintillators exhibit shorter radiation absorption lengths (∼3 cm at 511 keV) and faster scintillation decay time components (∼0.5 ns) compared to those of QW HOIP bromide scintillators. Finally, we investigate the light yields of iodide-based QW HOIP crystals at 10 K (∼10 photons/keV), while at room temperature they still show pulse height spectra with light yields between 1 and 2 photons/keV, which is still >5 times lower than those for bromides. The lower light yields can be the drawbacks of iodide-based QW HOIP scintillators, but the promising high mass density and decay time results of our study can provide the right pathway for further improvements toward fast-timing applications.

5.
Inorg Chem ; 62(23): 8892-8902, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37236171

ABSTRACT

Two-dimensional hybrid-organic-inorganic perovskite (2D-HOIP) lead bromide perovskite crystals have demonstrated great potential as scintillators with high light yields and fast decay times while also being low cost with solution-processable materials for wide energy radiation detection. Ion doping has been also shown to be a very promising avenue for improvements of the scintillation properties of 2D-HOIP crystals. In this paper, we discuss the effect of rubidium (Rb) doping on two previously reported 2D-HOIP single crystals, BA2PbBr4 and PEA2PbBr4. We observe that doping the perovskite crystals with Rb ions leads to an expansion of the crystal lattices of the materials, which also leads to narrowing of band gaps down to 84% of the pure compounds. Rb doping of BA2PbBr4 and PEA2PbBr4 shows a broadening in the photoluminescence and scintillation emissions of both perovskite crystals. Rb doping also leads to faster γ-ray scintillation decay times, as fast as 4.4 ns, with average decay time decreases of 15% and 8% for Rb-doped BA2PbBr4 and PEA2PbBr4, respectively, compared to those of undoped crystals. The inclusion of Rb ions also leads to a slightly longer afterglow, with residual scintillation still being below 1% after 5 s at 10 K, for both undoped and Rb-doped perovskite crystals. The light yield of both perovskites is significantly increased by Rb doping with improvements of 58% and 25% for BA2PbBr4 and PEA2PbBr4, respectively. This work shows that Rb doping leads to a significant enhancement of the 2D-HOIP crystal performance, which is of particular significance for high light yield and fast timing applications, such as photon counting or positron emission tomography.

6.
Opt Express ; 30(24): 44103-44117, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36523093

ABSTRACT

We report the development of a method for eliminating background-induced systematic shifts affecting precise measurements of saturation absorption signals. With this technique, we measured the absolute frequency of the 6s21S0 → 6s6p3P1 transition in 201aHg (F = 3/2 → F' = 5/2) to be 1181541111051(83) kHz. The measurement was referenced with an optical frequency comb synchronized to the frequency of the local representation of the UTC. This specific atomic line is situated on the steep slope of the Doppler background at room temperature, which results in a frequency systematic shift. We determined the dependence of this shift on the properties of both the spectral line and the background of the measured signal.

7.
Opt Express ; 30(12): 21423-21438, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-36224862

ABSTRACT

We present the measurements of the photoionization cross sections of the excited 1P1 and 3S1 states of ultracold 88Sr atoms at 389.889 nm wavelength, which is the magic wavelength of the 1S0-3P0 clock transition. The photoionization cross section of the 1P1 state is determined from the measured ionization rates of 88Sr in the magneto-optical trap in the 1P1 state to be 2.20(50)×10-20 m2, while the photoionization cross section of 88Sr in the 3S1 state is inferred from the photoionization-induced reduction in the number of atoms transferred through the 3S1 state in an operating optical lattice clock to be 1.38(66) ×10-18 m2. Furthermore, the resulting limitations of employing a blue-detuned magic wavelength optical lattice in strontium optical lattice clocks are evaluated. We estimated photoionization induced loss rates of atoms at 389.889 nm wavelength under typical experimental conditions and made several suggestions on how to mitigate these losses. In particular, the large photoionization induced losses for the 3S1 state would make the use of the 3S1 state in the optical cycle in a blue-detuned optical lattice unfeasible and would instead require the less commonly used 3D1,2 states during the detection part of the optical clock cycle.

8.
Nanotechnology ; 33(50)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36075187

ABSTRACT

In this work we demonstrated the process of co-deposition of copper-tin sulfide species by the atomic layer deposition (ALD) technique using all-low-cost precursors. For the deposition of tin species, the tin(IV) chloride SnCl4was used successfully for the first time in the ALD process. Moreover, we showed that the successful deposition of the tin sulfide component was conditioned by the pre-deposition of CuSxlayer. The co-deposition of copper and tin sulfides components at 150 °C resulted in the in-process formation of the film containing Cu2SnS3, Cu3SnS4andπ-SnS phases. The process involving only tin precursor and H2S did not produce the SnSxspecies. The spectroscopic characteristic of the obtained materials were confronted with the literature survey, allowing us to discuss the methodology of the determination of ternary and quaternary sulfides purity by Raman spectroscopy. Moreover, the material characterisation with respect to the morphology (SEM), phase composition (XRD), surface chemical states (XPS), optical properties (UV-vis-NIR spectroscopy) and electric (Hall measurements) properties were provided. Finally, the obtained material was used for the formation of the p-n junction revealing the rectifyingI-Vcharacteristics.

9.
ACS Appl Mater Interfaces ; 13(49): 59450-59459, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34855346

ABSTRACT

CsPbBr3 quantum dots (QDs) have recently gained much interest due to their excellent optical and scintillation properties and their potential for X-ray imaging applications. In this study, we blended CsPbBr3 QDs with resin at different QD concentrations to achieve thick films and to protect the CsPbBr3 QDs from environmental moisture. Then, their scintillation properties are investigated and compared to the traditional commercial scintillators, CsI:Tl microcolumns, and Gadox layers. The CsPbBr3 QD-resin sheets show a high light yield of up to 21 500 photons/MeV at room temperature and a relatively small variation in light yield across a wide temperature range. In addition, the CsPbBr3 QD-resin sheets feature a small scintillation afterglow. The CsPbBr3 QD-resin sheets show a negligible trap density for the concentration below 50% weight, indicating that traps might arise from the aggregation of the QDs. The CsPbBr3 QD-resin sheets are also very stable at low irradiation intensities and relatively stable at higher intensities, with higher CsPbBr3 QD concentrations being more stable. Gamma-ray-excited-time-resolved emission measurements at 662 keV showed that the CsPbBr3 QD-resin sheets have an average scintillation decay time between 108 and 176 ns, which are still 10 000 and 6000 times faster than CsI:Tl and Gadox, respectively. Imaging tests show that the CsPbBr3 QD-resin sheets have a mean transfer function of 50% at 2 lp/mm and 20% at 4 lp/mm, comparable to that of commercial Gadox layers. This feature makes CsPbBr3 QD-resin sheets a good candidate for the low-cost, flexible X-ray imaging screens and γ-ray applications.

10.
Int J Mol Sci ; 22(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34884712

ABSTRACT

Three new compounds, namely [HL]2+[CuCl4]2-, [HL]2+[ZnCl4]2-, and [HL]2+[CdCl4]2- (where L: imipramine) were synthesized and their physicochemical and biological properties were thoroughly investigated. All three compounds form isostructural, crystalline systems, which have been studied using Single-Crystal X-ray diffraction analysis (SC-XRD) and Fourier-transform infrared spectroscopy (FTIR). The thermal stability was investigated using thermogravimetric analysis (TGA) and melting points for all compounds have been determined. Magnetic measurements were performed in order to study the magnetic properties of the compounds. The above mentioned techniques allowed us to comprehensively examine the physicochemical properties of the newly obtained compounds. The biological activity was investigated using the number of Zebrafish tests, as it is one of the most common models for studying the impact of newly synthesized compounds on the central nervous system (CNS), since this model is very similar to the human CNS.


Subject(s)
Cadmium/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Embryo, Nonmammalian/cytology , Zebrafish/growth & development , Zinc/chemistry , Animals , Electrons , Embryo, Nonmammalian/drug effects , Larva/drug effects , Larva/growth & development
12.
Sci Rep ; 11(1): 22746, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34815455

ABSTRACT

In this work, the multiferroic bismuth ferrite materials Bi0.9RE0.1FeO3 doped by rare-earth (RE = La, Eu, and Er) elements were obtained by the solution combustion synthesis. Structure, electrical, and magnetic properties of prepared samples were investigated by X-ray photoelectron spectroscopy, Mössbauer spectroscopy, electrical hysteresis measurement, broadband dielectric spectroscopy, and SQUID magnetometry. All obtained nanomaterials are characterized by spontaneous electrical polarization, which confirmed their ferroelectric properties. Investigation of magnetic properties at 300.0 K and 2.0 K showed that all investigated Bi0.9RE0.1FeO3 ferrites possess significantly higher magnetization in comparison to bismuth ferrites obtained by different methods. The highest saturation magnetisation of 5.161 emu/g at 300.0 K was observed for the BLaFO sample, while at 2.0 K it was 12.07 emu/g for the BErFO sample. Several possible reasons for these phenomena were proposed and discussed.

13.
Front Chem ; 9: 697595, 2021.
Article in English | MEDLINE | ID: mdl-34222201

ABSTRACT

Nanocomposites combining magnetic and plasmonic properties are very attractive within the field of surface-enhanced Raman scattering (SERS) spectroscopy. Applications presented so far take advantage of not only the cooperation of both components but also synergy (enhanced properties), leading to multi-approach analysis. While many methods were proposed to synthesize such plasmonic-magnetic nanoparticles, the issue of their collective magnetic behavior, inducing irreversible self-aggregation, has not been addressed yet. Thus, here we present a simple and fast method to overcome this problem, employing 2-mercaptoethanesulfonate (MES) ions as both a SERS tag and primer molecules in the silica-coating process of the previously fabricated Fe3O4/Ag nanocomposite. The use of MES favored the formation of silica-coated nanomaterial comprised of well-dispersed small clusters of Fe3O4/Ag nanoparticles. Furthermore, adsorbed MES molecules provided a reliable SERS response, which was successfully detected after magnetic assembly of the Fe3O4/Ag@MES@SiO2 on the surface of the banknote. Improved chemical stability after coating with a silica layer was also found when the nanocomposite was exposed to suspension of yeast cells. This work reports on the application of 2-mercaptoethanesulfonate not only providing a photostable SERS signal due to a non-aromatic Raman reporter but also acting as a silica-coating primer and a factor responsible for a substantial reduction of the self-aggregation of the plasmonic-magnetic nanocomposite. Additionally, here obtained Fe3O4/Ag@MES@SiO2 SERS nanotags showed the potential as security labels for the authentication purposes, retaining its original SERS performance after deposition on the banknote.

14.
RSC Adv ; 11(34): 20635-20640, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-35479341

ABSTRACT

We report the optical and scintillation properties of (C6H5CH2NH3)2SnBr4 with excellent absorption length at 20 keV of 0.016 cm, measured bandgap of 2.51 eV, and photoluminescence lifetime of 1.05 µs. The light yield obtained with the 241Am source is 3600 ± 600 photons per MeV, which is much smaller than the maximum attainable light yield obtained from the bandgap. Temperature dependent radioluminescence measurements confirm the presence of thermal quenching at room temperature with the activation energy and the ratio between the attempt and the radiative transition rates of 61 meV and 129, respectively. Although thermal quenching affects light yield at room temperature, this green light-emitting perovskite opens an avenue for new lead-free scintillating materials.

15.
Adv Med Sci ; 65(1): 102-110, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31923769

ABSTRACT

PURPOSE: Inflammatory mechanisms have been suggested to play a role in the heart failure with reduced ejection fraction (HF-REF) development, but the role of chemokines is largely unknown. Cardiac resynchronization therapy (CRT) may reverse the HF-REF course. We aimed to evaluate selected chemokines concentrations in HF-REF patients and their relationship with disease severity and clinical response to CRT. MATERIALS AND METHODS: The study included 37 patients (64.1 ± 11.04 years, 6 females) with HF-REF subjected to CRT, controlled prior to implantation and after 6 months. The control population included 26 healthy volunteers (63.9 ± 8.1 years, 8 females). Serum chemokines concentrations were determined using multiplex method. RESULTS: HF-REF patients were characterized by the higher baseline MIF, NAP-2 and PF4 concentrations and lower Axl, BTC, IL-9, and IL-18 BPa concentrations comparing to controls. After 6 months of CRT only NAP-2 concentration decreased significantly in comparison to the baseline values. CONCLUSIONS: HF-REF patients present altered chemokines profile compared to the control group. The CRT-related alleviation of HF-REF causes only slight changes in the chemokines concentrations especially in the platelet-associated ones. The precise chemokines role in the HF-REF pathogenesis and their prognostic value remains to be established.


Subject(s)
Biomarkers/blood , Cardiac Resynchronization Therapy/methods , Chemokines/blood , Heart Failure/pathology , Aged , Chronic Disease , Female , Follow-Up Studies , Heart Failure/blood , Heart Failure/therapy , Humans , Male , Middle Aged , Risk Factors , Treatment Outcome
16.
Article in English | MEDLINE | ID: mdl-31752144

ABSTRACT

The influence of high-heel footwear on the lumbar lordosis angle, anterior pelvic tilt, and sacral tilt are inconsistently described in the literature. This study aimed to investigate the impact of medium-height heeled footwear on the static posture parameters of homogeneous young adult standing women. Heel geometry, data acquisition process, as well as data analysis and parameter extraction stage, were controlled. Seventy-six healthy young adult women with experience in wearing high-heeled shoes were enrolled. Data of fifty-three subjects were used for analysis due to exclusion criteria (scoliotic posture or missing measurement data). A custom structured light surface topography measurement system was used for posture parameters assessment. Three barefoot measurements were taken as a reference and tested for the reliability of the posture parameters. Two 30-degree wedges were used to imitate high-heel shoes to achieve a repeatable foot position. Our study confirmed the significant (p < 0.001) reduced vertical balance angle and pelvis inclination angle with large and medium-to-large effects, respectively, due to high-heel shoes. No significant differences were found in the kyphosis or lordosis angles. High-heeled shoes of medium height in young asymptomatic women can lead to a straightening effect associated with a reduced vertical balance angle and decreased pelvic inclination.


Subject(s)
Heel/physiology , Posture , Shoes/statistics & numerical data , Female , Humans , Poland , Reproducibility of Results , Young Adult
17.
Opt Express ; 27(8): 11069-11083, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-31052957

ABSTRACT

We report the measurement of the absolute frequencies of the 6s2 1S0-6s6p 3P1 transition (253.7 nm) and the relevant isotope shifts in five mercury isotopes  198Hg,  199Hg,  200Hg,  202Hg, and  204Hg. The Doppler-free saturated absorption measurements were performed in an atomic vapour cell at room temperature with a four-harmonic generated (FHG) continuous-wave (cw) laser digitally locked to the atomic transition. It was referenced with a femtosecond optical frequency comb synchronized to the frequency of local representation of the International Atomic Time to provide traceability to the SI second by the 330 km-long stabilized fibre optical link. The transition frequencies and isotope shifts have been determined with an accuracy of a few hundred kHz, at least one order of magnitude better than any previous measurement. By making a King plot with the isotope shifts of 6s6p 3P2-6s7s 3S1 transition (546 nm) we determined the accurate value of the ratio of the electronic field-shift parameters E546/E254 and estimated the electronic field-shift term E254.

19.
Sensors (Basel) ; 18(9)2018 Aug 27.
Article in English | MEDLINE | ID: mdl-30150558

ABSTRACT

The existing methods for measuring the shape of the human body in motion are limited in their practical application owing to immaturity, complexity, and/or high price. Therefore, we propose a method based on structured light supported by multispectral separation to achieve multidirectional and parallel acquisition. Single-frame fringe projection is employed in this method for detailed geometry reconstruction. An extended phase unwrapping method adapted for measurement of the human body is also proposed. This method utilizes local fringe parameter information to identify the optimal unwrapping path for reconstruction. Subsequently, we present a prototype 4DBODY system with a working volume of 2.0 × 1.5 × 1.5 m³, a measurement uncertainty less than 0.5 mm and an average spatial resolution of 1.0 mm for three-dimensional (3D) points. The system consists of eight directional 3D scanners functioning synchronously with an acquisition frequency of 120 Hz. The efficacy of the proposed system is demonstrated by presenting the measurement results obtained for known geometrical objects moving at various speeds as well actual human movements.


Subject(s)
Human Body , Imaging, Three-Dimensional/methods , Light , Movement , Humans , Movement/radiation effects
20.
Arch Med Sci ; 13(5): 1069-1077, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28883848

ABSTRACT

INTRODUCTION: Increased expression of interleukin-6 (IL-6) has been described in left ventricular dysfunction in the course of chronic heart failure. Cardiac resynchronization therapy (CRT) is a unique treatment method that may reverse the course of chronic heart failure (CHF) with reduced ejection fraction (HF-REF). We aimed to evaluate the IL-6 system, including soluble IL-6 receptor (sIL-6R) and soluble glycoprotein 130 (sgp130), in HF-REF patients, with particular emphasis on CRT effects. MATERIAL AND METHODS: The study enrolled 88 stable HF-REF patients (63.6 ±11.1 years, 12 females, EF < 35%) and 35 comorbidity-matched controls (63.5 ±9.8 years, 7 females). Forty-five HF-REF patients underwent CRT device implantation and were followed up after 6 months. Serum concentrations of IL-6, sIL-6R and sgp130 were determined using ELISA kits. RESULTS: The HF-REF patients had higher IL-6 (median: 2.6, IQR: 1.6-3.8 vs. 2.1, IQR: 1.4-3.1 pg/ml, p = 0.03) and lower sIL-6R concentrations compared to controls (median: 51, IQR: 36-64 vs. 53. IQR 44-76 ng/ml, p = 0.008). There was no significant difference between sgp130 concentrations. In the HF-REF group IL-6 correlated negatively with EF (r = -0.5, p = 0.001) and positively with BNP (r = 0.5, p = 0.008) and CRP concentrations (r = 0.4, p = 0.02). Patients who presented a positive response after CRT showed a smaller change of sIL-6R concentration compared to nonresponders (ΔsIL-6R: -0.2 ±7.1 vs. 7 ±14 ng/ml; p = 0.04). CONCLUSIONS: HF-REF patients present higher IL-6 and lower sIL-6R levels. IL-6 concentration reflects their clinical status. CRT-related improvement of patients' functional status is associated with a smaller change of sIL-6R concentration in time.

SELECTION OF CITATIONS
SEARCH DETAIL
...