Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Circulation ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836358

ABSTRACT

BACKGROUND: Whether aortic valve stenosis (AS) can adversely affect systemic endothelial function independently of standard modifiable cardiovascular risk factors is unknown. METHODS: We therefore investigated endothelial and cardiac function in an experimental model of AS mice devoid of standard modifiable cardiovascular risk factors and human cohorts with AS scheduled for transcatheter aortic valve replacement. Endothelial function was determined by flow-mediated dilation using ultrasound. Extracellular hemoglobin (eHb) concentrations and NO consumption were determined in blood plasma of mice and humans by ELISA and chemiluminescence. This was complemented by measurements of aortic blood flow using 4-dimensional flow acquisition by magnetic resonance imaging and computational fluid dynamics simulations. The effects of plasma and red blood cell (RBC) suspensions on vascular function were determined in transfer experiments in a murine vasorelaxation bioassay system. RESULTS: In mice, the induction of AS caused systemic endothelial dysfunction. In the presence of normal systolic left ventricular function and mild hypertrophy, the increase in the transvalvular gradient was associated with elevated eryptosis, increased eHb and plasma NO consumption; eHb sequestration by haptoglobin restored endothelial function. Because the aortic valve orifice area in patients with AS decreased, postvalvular mechanical stress in the central ascending aorta increased. This was associated with elevated eHb, circulating RBC-derived microvesicles, eryptotic cells, lower haptoglobin levels without clinically relevant anemia, and consecutive endothelial dysfunction. Transfer experiments demonstrated that reduction of eHb by treatment with haptoglobin or elimination of fluid dynamic stress by transcatheter aortic valve replacement restored endothelial function. In patients with AS and subclinical RBC fragmentation, the remaining circulating RBCs before and after transcatheter aortic valve replacement exhibited intact membrane function, deformability, and resistance to osmotic and hypoxic stress. CONCLUSIONS: AS increases postvalvular swirling blood flow in the central ascending aorta, triggering RBC fragmentation with the accumulation of hemoglobin in the plasma. This increases NO consumption in blood, thereby limiting vascular NO bioavailability. Thus, AS itself promotes systemic endothelial dysfunction independent of other established risk factors. Transcatheter aortic valve replacement is capable of limiting NO scavenging and rescuing endothelial function by realigning postvalvular blood flow to near physiological patterns. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05603520. URL: https://www.clinicaltrials.gov; Unique identifier: NCT01805739.

2.
PLoS One ; 12(2): e0171817, 2017.
Article in English | MEDLINE | ID: mdl-28199374

ABSTRACT

Macrophages are natural host cells for pathogenic mycobacteria, like Mycobacterium tuberculosis (M.tb). Immune surveillance by T cells and interaction with M.tb infected macrophages is crucial for protection against M.tb reactivation and development of active tuberculosis. Several factors play a role in the control of M.tb infection but reliable biomarkers remain elusive. One major obstacle is the absence of functional in vitro assays which allow concomitant determination of i) mycobacterial eradication; ii) cytotoxic effects on host macrophages; and iii) effector T-cell functions. We established a novel functional in vitro assay based on flow cytometry analysis of monocyte-derived macrophages (MDM) infected with a Mycobacterium bovis BCG strain containing a tetracycline inducible live/dead reporter plasmid (LD-BCG). MDM of healthy human donors were generated in vitro and infected with defined LD-BCG numbers. After short-term MDM/LD-BCG co-incubation with autologous effector T cells or in the presence of antibiotics, proportions of MDM containing live or dead LD-BCG were determined by flow cytometry. Concomitant measure of defined numbers of added beads allowed comparison of absolute MDM numbers between samples. Differential effects of T-cell subpopulations on anti-mycobacterial cytotoxicity and on MDM apoptosis were determined. Flow cytometry measure of MDM/LD-BCG treated with rifampicin correlated well with mycobacterial colony forming units and fluorescence microscopy results. Co-culture with pre-activated effector T cells reduced viability of both, LD-BCG and MDM, in a concentration-dependent manner. M.tb protein specific CD4+ and CD8+ T-cells contributed similarly to anti-mycobacterial cytotoxicity but CD4+ T cells induced higher levels of apoptosis in infected MDMs. This novel assay enables rapid quantification of anti-mycobacterial cytotoxicity and characterization of effector functions. Our functional in vitro assay has the potential to contribute to the identification of biomarkers for protective T-cell responses against tuberculosis.


Subject(s)
Apoptosis , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Macrophages/cytology , Macrophages/microbiology , Mycobacterium bovis/physiology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/microbiology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/microbiology , Cells, Cultured , Flow Cytometry , Humans , Leukocytes, Mononuclear/cytology , Mycobacterium bovis/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...