Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L125-L134, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38084404

ABSTRACT

Cystic fibrosis-related diabetes (CFRD) affects 40%-50% of adults with CF and is associated with a decline in respiratory health. The microbial flora of the lung is known to change with the development of CF disease, but how CFRD affects the microbiome has not been described. We analyzed the microbiome in sputa from 14 people with CF, 14 with CFRD, and two who were classed as pre-CFRD by extracting DNA and amplifying the variable V3-V4 region of the microbial 16S ribosomal RNA gene by PCR. Sequences were analyzed and sources were identified to genus level. We found that the α-diversity of the microbiome using Shannon's diversity index was increased in CFRD compared with CF. Bray Curtis dissimilarity analysis showed that there was separation of the microbiomes in CF and CFRD sputa. The most abundant phyla identified in the sputum samples were Firmicutes and Proteobacteria, Actinobacteriota and Bacteroidota, and the ratio of Firmicutes/Bacteroidota was reduced in CFRD compared with CF. Pseudomonas, Azhorizophilus, Porphyromonas, and Actinobacillus were more abundant in CFRD compared with CF, whereas Staphylococcus was less abundant. The relative abundance of these genera did not correlate with age; some correlated with a decline in FEV1/FVC but all correlated with hemoglobin A1C (HbA1c) indicating that development of CFRD mediates further changes to the respiratory microbiome in CF.NEW & NOTEWORTHY Cystic fibrosis-related diabetes (CFRD) is associated with a decline in respiratory health. We show for the first time that there was a change in the sputum microbiome of people with CFRD compared with CF that correlated with markers of raised blood glucose.


Subject(s)
Cystic Fibrosis , Diabetes Mellitus , Microbiota , Adult , Humans , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Sputum , Lung/microbiology
2.
PLOS Glob Public Health ; 3(10): e0002283, 2023.
Article in English | MEDLINE | ID: mdl-37851685

ABSTRACT

Bedaquiline (B), pretomanid (Pa) and linezolid (L) are key components of new regimens for treating rifampicin-resistant tuberculosis (TB). However, there is limited information on the global prevalence of resistance to these drugs and the impact of resistance on treatment outcomes. Mycobacterium tuberculosis (MTB) phenotypic drug susceptibility and whole-genome sequence (WGS) data, as well as patient profiles from 4 pretomanid-containing trials-STAND, Nix-TB, ZeNix and SimpliciTB-were used to investigate the rates of baseline resistance (BR) and acquired resistance (AR) to BPaL drugs, as well as their genetic basis, risk factors and impact on treatment outcomes. Data from >1,000 TB patients enrolled from 2015 to 2020 in 12 countries was assessed. We identified 2 (0.3%) participants with linezolid BR. Pretomanid BR was also rare, with similar rates across TB drug resistance types (0-2.1%). In contrast, bedaquiline BR was more prevalent among participants with highly resistant TB or longer prior treatment histories than those with newly diagnosed disease (5.2-6.3% vs. 0-0.3%). Bedaquiline BR was a risk factor for bacteriological failure or relapse in Nix-TB/ZeNix; 3/12 (25%, 95% CI 5-57%) participants with vs. 6/185 (3.2%, 1.2-6.9%) without bedaquiline BR. Across trials, we observed no linezolid AR, and only 3 cases of bedaquiline AR, including 2 participants with poor adherence. Overall, pretomanid AR was also rare, except in ZeNix patients with bedaquiline BR. WGS analyses revealed novel mutations in canonical resistant genes and, in 7 MTB isolates, the genetic determinants could not be identified. The overall low rates of BR to linezolid and pretomanid, and to a lesser extent to bedaquiline, observed in the pretomanid trials are in support of the worldwide implementation of BPaL-based regimens. Similarly, the overall low AR rates observed suggest BPaL drugs are better protected in the regimens trialed here than in other regimens combining bedaquiline with more, but less effective drugs.

3.
Microb Genom ; 9(8)2023 08.
Article in English | MEDLINE | ID: mdl-37526642

ABSTRACT

The bacillus Calmette-Guérin (BCG) vaccine has been in use for prevention of tuberculosis for over a century. It remains the only widely available tuberculosis vaccine and its protective efficacy has varied across geographical regions. Since it was developed, the BCG vaccine strain has been shared across different laboratories around the world, where use of differing culture methods has resulted in genetically distinct strains over time. Whilst differing BCG vaccine efficacy around the world is well documented, and the reasons for this may be multifactorial, it has been hypothesized that genetic differences in BCG vaccine strains contribute to this variation. Isolates from an historic archive of lyophilized BCG strains were regrown, DNA was extracted and then whole-genome sequenced using Oxford Nanopore Technologies. The resulting whole-genome data were plotted on a phylogenetic tree and analysed to identify the presence or absence of regions of difference (RDs) and single-nucleotide polymorphisms (SNPs) relating to virulence, growth and cell wall structure. Of 50 strains available, 36 were revived in culture and 39 were sequenced. Morphology differed between the strains distributed before and after 1934. There was phylogenetic association amongst certain geographically classified strains, most notably BCG-Russia, BCG-Japan and BCG-Danish. RD2, RD171 and RD713 deletions were associated with late strains (seeded after 1927). When mapped to BCG-Pasteur 1172, the SNPs in sigK, plaA, mmaA3 and eccC5 were associated with early strains. Whilst BCG-Russia, BCG-Japan and BCG-Danish showed strong geographical isolate clustering, the late strains, including BCG-Pasteur, showed more variation. A wide range of SNPs were seen within geographically classified strains, and as much intra-strain variation as between-strain variation was seen. The date of distribution from the original Pasteur laboratory (early pre-1927 or late post-1927) gave the strongest association with genetic differences in regions of difference and virulence-related SNPs, which agrees with the previous literature.


Subject(s)
Mycobacterium bovis , Tuberculosis , Humans , BCG Vaccine/genetics , Phylogeny , Tuberculosis/prevention & control , Base Sequence
4.
Clin Microbiol Infect ; 29(9): 1166-1173, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37207981

ABSTRACT

OBJECTIVES: Methicillin-resistant Staphylococcus aureus (MRSA) infections impose a considerable burden on health systems, yet there is remarkable variation in the global incidence and epidemiology of MRSA. The MACOTRA consortium aimed to identify bacterial markers of epidemic success of MRSA isolates in Europe using a representative MRSA collection originating from France, the Netherlands and the United Kingdom. METHODS: Operational definitions of success were defined in consortium meetings to compose a balanced strain collection of successful and sporadic MRSA isolates. Isolates were subjected to antimicrobial susceptibility testing and whole-genome sequencing; genes were identified and phylogenetic trees constructed. Markers of epidemiological success were identified using genome-based time-scaled haplotypic density analysis and linear regression. Antimicrobial usage data from ESAC-Net was compared with national MRSA incidence data. RESULTS: Heterogeneity of MRSA isolate collections across countries hampered the use of a unified operational definition of success; therefore, country-specific approaches were used to establish the MACOTRA strain collection. Phenotypic antimicrobial resistance varied within related MRSA populations and across countries. In time-scaled haplotypic density analysis, fluoroquinolone, macrolide and mupirocin resistance were associated with MRSA success, whereas gentamicin, rifampicin and trimethoprim resistance were associated with sporadicity. Usage of antimicrobials across 29 European countries varied substantially, and ß-lactam, fluoroquinolone, macrolide and aminoglycoside use correlated with MRSA incidence. DISCUSSION: Our results are the strongest yet to associate MRSA antibiotic resistance profiles and antibiotic usage with the incidence of infection and successful clonal spread, which varied by country. Harmonized isolate collection, typing, resistance profiling and alignment with antimicrobial usage over time will aid comparisons and further support country-specific interventions to reduce MRSA burden.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Phylogeny , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fluoroquinolones , Microbial Sensitivity Tests
5.
JAC Antimicrob Resist ; 5(3): dlad056, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37193005

ABSTRACT

Background: WGS has significant potential to help tackle the major public health problem of TB. The Republic of Korea has the third highest rates of TB of all Organisation for Economic Cooperation and Development countries but there has been very limited use of WGS in TB to date. Objectives: A retrospective comparison of Mycobacterium tuberculosis (MTB) clinical isolates from 2015 to 2017 from two centres in the Republic of Korea using WGS to compare phenotypic drug susceptibility testing (pDST) and WGS drug susceptibility predictions (WGS-DSP). Methods: Fifty-seven MTB isolates had DNA extracted and were sequenced using the Illumina HiSeq platform. The WGS analysis was performed using bwa mem, bcftools and IQ-Tree; resistance markers were identified using TB profiler. Phenotypic susceptibilities were carried out at the Supranational TB reference laboratory (Korean Institute of Tuberculosis). Results: For first-line antituberculous drugs concordance for rifampicin, isoniazid, pyrazinamide and ethambutol was 98.25%, 92.98%, 87.72% and 85.96%, respectively. The sensitivity of WGS-DSP compared with pDST for rifampicin, isoniazid, pyrazinamide and ethambutol was 97.30%, 92.11%, 78.95% and 95.65%, respectively. The specificity for these first-line antituberculous drugs was 100%, 94.74%, 92.11% and 79.41%, respectively. The sensitivity and specificity for second-line drugs ranged from 66.67% to 100%, and from 82.98% to 100%, respectively. Conclusions: This study confirms the potential role for WGS in drug susceptibility prediction, which would reduce turnaround times. However, further larger studies are needed to ensure current databases of drug resistance mutations are reflective of the TB present in the Republic of Korea.

6.
J Infect Dis ; 228(9): 1179-1188, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37216766

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a global health challenge. Limitations to AMR surveillance reporting, alongside reduction in culture-based susceptibility testing, has resulted in a need for rapid diagnostics and strain detection. We investigated Nanopore sequencing time, and depth, to accurately identify closely related N. gonorrhoeae isolates, compared to Illumina sequencing. METHODS: N. gonorrhoeae strains collected from a London sexual health clinic were cultured and sequenced with MiSeq and MinION sequencing platforms. Accuracy was determined by comparing variant calls at 68 nucleotide positions (37 resistance-associated markers). Accuracy at varying MinION sequencing depths was determined through retrospective time-stamped read analysis. RESULTS: Of 22 MinION-MiSeq pairs reaching sufficient sequencing depth, agreement of variant call positions passing quality control criteria was 185/185 (100%; 95% confidence interval [CI], 98.0%-100.0%), 502/503 (99.8%; 95% CI, 98.9%-99.9%), and 564/565 (99.8%; 95% CI, 99.0%-100.0%) at 10x, 30x, and 40x MinION depth, respectively. Isolates identified as closely related by MiSeq, within one yearly evolutionary distance of ≤5 single nucleotide polymorphisms, were accurately identified via MinION. CONCLUSIONS: Nanopore sequencing shows utility as a rapid surveillance tool, identifying closely related N. gonorrhoeae strains, with just 10x sequencing depth, taking a median time of 29 minutes. This highlights its potential for tracking local transmission and AMR markers.


Subject(s)
Gonorrhea , Nanopores , Humans , Neisseria gonorrhoeae/genetics , Phylogeny , Retrospective Studies , Whole Genome Sequencing/methods , Gonorrhea/diagnosis , Gonorrhea/epidemiology , Microbial Sensitivity Tests , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology
7.
J Virol ; 97(3): e0184622, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36916924

ABSTRACT

Cellular antiviral factors that recognize viral nucleic acid can inhibit virus replication. These include the zinc finger antiviral protein (ZAP), which recognizes high CpG dinucleotide content in viral RNA. Here, we investigated the ability of ZAP to inhibit the replication of human cytomegalovirus (HCMV). Depletion of ZAP or its cofactor KHNYN increased the titer of the high-passage HCMV strain AD169 but had little effect on the titer of the low-passage strain Merlin. We found no obvious difference in expression of several viral proteins between AD169 and Merlin in ZAP knockdown cells, but observed a larger increase in infectious virus in AD169 compared to Merlin in the absence of ZAP, suggesting that ZAP inhibited events late in AD169 replication. In addition, there was no clear difference in the CpG abundance of AD169 and Merlin RNAs, indicating that genomic content of the two virus strains was unlikely to be responsible for differences in their sensitivity to ZAP. Instead, we observed less ZAP expression in Merlin-infected cells late in replication compared to AD169-infected cells, which may be related to different abilities of the two virus strains to regulate interferon signaling. Therefore, there are strain-dependent differences in the sensitivity of HCMV to ZAP, and the ability of low-passage HCMV strain Merlin to evade inhibition by ZAP is likely related to its ability to regulate interferon signaling, not the CpG content of RNAs produced from its genome. IMPORTANCE Determining the function of cellular antiviral factors can inform our understanding of virus replication. The zinc finger antiviral protein (ZAP) can inhibit the replication of diverse viruses. Here, we examined ZAP interaction with the DNA virus human cytomegalovirus (HCMV). We found HCMV strain-dependent differences in the ability of ZAP to influence HCMV replication, which may be related to the interaction of HCMV strains with the type I interferon system. These observations affect our current understanding of how ZAP restricts HCMV and how HCMV interacts with the type I interferon system.


Subject(s)
Cytomegalovirus , Interferon Type I , Humans , Cytomegalovirus/metabolism , Neurofibromin 2/metabolism , Neurofibromin 2/pharmacology , RNA-Binding Proteins/metabolism , Virus Replication/physiology , Antiviral Agents/pharmacology , Interferon Type I/metabolism , Zinc Fingers
8.
NEJM Evid ; 2(9): EVIDoa2300054, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38320155

ABSTRACT

BACKGROUND: Shorter but effective tuberculosis treatment regimens would be of value to the tuberculosis treatment community. High-dose rifampicin has been associated with more rapid and secure lung sterilization and may enable shorter tuberculosis treatment regimens. METHODS: We randomly assigned adults who were given a diagnosis of rifampicin-susceptible pulmonary tuberculosis to a 6-month control regimen, a similar 4-month regimen of rifampicin at 1200 mg/d (study regimen 1 [SR1]), or a 4-month regimen of rifampicin at 1800 mg/d (study regimen 2 [SR2]). Sputum specimens were collected at regular intervals. The primary end point was a composite of treatment failure and relapse in participants who were sputum smear positive at baseline. The noninferiority margin was 8 percentage points. Using a sequence of ordered hypotheses, noninferiority of SR2 was tested first. RESULTS: Between January 2017 and December 2020, 672 patients were enrolled in six countries, including 191 in the control group, 192 in the SR1 group, and 195 in the SR2 group. Noninferiority was not shown. Favorable responses rates were 93, 90, and 87% in the control, SR1, and SR2 groups, respectively, for a country-adjusted absolute risk difference of 6.3 percentage points (90% confidence interval, 1.1 to 11.5) comparing SR2 with the control group. The proportions of participants experiencing a grade 3 or 4 adverse event were 4.0, 4.5, and 4.4% in the control, SR1, and SR2 groups, respectively. CONCLUSIONS: Four-month high-dose rifampicin regimens did not have dose-limiting toxicities or side effects but failed to meet noninferiority criteria compared with the standard 6-month control regimen for treatment of pulmonary tuberculosis. (Funded by the MRC/Wellcome Trust/DFID Joint Global Health Trials Scheme; ClinicalTrials.gov number, NCT02581527.)


Subject(s)
Rifampin , Tuberculosis, Pulmonary , Humans , Rifampin/adverse effects , Antitubercular Agents/adverse effects , Isoniazid/therapeutic use , Drug Therapy, Combination , Tuberculosis, Pulmonary/chemically induced
9.
Sci Rep ; 12(1): 21429, 2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36504241

ABSTRACT

Concentration dependency of phenotypic and genotypic isoniazid-rifampicin resistance emergence was investigated to obtain a mechanistic understanding on how anti-mycobacterial drugs facilitate the emergence of bacterial populations that survive throughout treatment. Using static kill curve experiments, observing two evolution cycles, it was demonstrated that rifampicin resistance was the result of non-specific mechanisms and not associated with accumulation of drug resistance encoding SNPs. Whereas, part of isoniazid resistance could be accounted for by accumulation of specific SNPs, which was concentration dependent. Using a Hollow Fibre Infection Model it was demonstrated that emergence of resistance did not occur at concentration-time profiles mimicking the granuloma. This study showed that disentangling and quantifying concentration dependent emergence of resistance provides an improved rational for drug and dose selection although further work to understand the underlying mechanisms is needed to improve the drug development pipeline.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/genetics , Anti-Bacterial Agents , Drug Resistance, Bacterial/genetics , Genotype , Isoniazid/pharmacology , Rifampin/pharmacology
10.
Medicine (Baltimore) ; 101(46): e31419, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36401392

ABSTRACT

Microbiota composition in breast milk affects intestinal and respiratory microbiota colonization and the mucosal immune system's development in infants. The metabolomic content of breast milk is thought to interact with the microbiota and may influence developing infant immunity. One hundred seven Gambian mothers and their healthy, vaginally delivered, exclusively breastfed infants were included in our study. We analyzed 32 breast milk samples, 51 maternal rectovaginal swabs and 30 infants' rectal swabs at birth. We also analyzed 9 breast milk samples and 18 infants' nasopharyngeal swabs 60 days post-delivery. We used 16S rRNA gene sequencing to determine the microbiota composition. Metabolomic profiling analysis was performed on colostrum and mature breast milk samples using a multiplatform approach combining 1-H Nuclear Magnetic Resonance Spectroscopy and Gas Chromatography-Mass Spectrometry. Bacterial communities were distinct in composition and diversity across different sample types. Breast milk composition changed over the first 60 days of lactation. α-1,4- and α-1,3-fucosylated human milk oligosaccharides, and other 33 key metabolites in breast milk (monosaccharides, sugar alcohols and fatty acids) increased between birth and day 60 of life. This study's results indicate that infant gut and respiratory microbiota are unique bacterial communities, distinct from maternal gut and breast milk, respectively. Breast milk microbiota composition and metabolomic profile change throughout lactation. These changes may contribute to the infant's immunological, metabolic, and neurological development and could consist the basis for future interventions to correct disrupted early life microbial colonization.


Subject(s)
Microbiota , Milk, Human , Humans , Infant , Infant, Newborn , Female , Milk, Human/chemistry , Breast Feeding , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Prospective Studies , Gambia , Lactation , Bacteria
11.
Front Microbiol ; 13: 1017278, 2022.
Article in English | MEDLINE | ID: mdl-36267174

ABSTRACT

The RNA chaperone Hfq promotes the association of small RNAs (sRNAs) with cognate mRNAs, controlling the expression of bacterial phenotype. Actinobacillus pleuropneumoniae hfq mutants strains are attenuated for virulence in pigs, impaired in the ability to form biofilms, and more susceptible to stress, but knowledge of the extent of sRNA involvement is limited. Here, using A. pleuropneumoniae strain MIDG2331 (serovar 8), 14 sRNAs were identified by co-immunoprecipitation with Hfq and the expression of eight, identified as trans-acting sRNAs, were confirmed by Northern blotting. We focused on one of these sRNAs, named Rna01, containing a putative promoter for RpoE (stress regulon) recognition. Knockout mutants of rna01 and a double knockout mutant of rna01 and hfq, both had decreased biofilm formation and hemolytic activity, attenuation for virulence in Galleria mellonella, altered stress susceptibility, and an altered outer membrane protein profile. Rna01 affected extracellular vesicle production, size and toxicity in G. mellonella. qRT-PCR analysis of rna01 and putative cognate mRNA targets indicated that Rna01 is associated with the extracytoplasmic stress response. This work increases our understanding of the multilayered and complex nature of the influence of Hfq-dependent sRNAs on the physiology and virulence of A. pleuropneumoniae.

12.
Elife ; 112022 Sep 13.
Article in English | MEDLINE | ID: mdl-36098502

ABSTRACT

Background: Viral sequencing of SARS-CoV-2 has been used for outbreak investigation, but there is limited evidence supporting routine use for infection prevention and control (IPC) within hospital settings. Methods: We conducted a prospective non-randomised trial of sequencing at 14 acute UK hospital trusts. Sites each had a 4-week baseline data collection period, followed by intervention periods comprising 8 weeks of 'rapid' (<48 hr) and 4 weeks of 'longer-turnaround' (5-10 days) sequencing using a sequence reporting tool (SRT). Data were collected on all hospital-onset COVID-19 infections (HOCIs; detected ≥48 hr from admission). The impact of the sequencing intervention on IPC knowledge and actions, and on the incidence of probable/definite hospital-acquired infections (HAIs), was evaluated. Results: A total of 2170 HOCI cases were recorded from October 2020 to April 2021, corresponding to a period of extreme strain on the health service, with sequence reports returned for 650/1320 (49.2%) during intervention phases. We did not detect a statistically significant change in weekly incidence of HAIs in longer-turnaround (incidence rate ratio 1.60, 95% CI 0.85-3.01; p=0.14) or rapid (0.85, 0.48-1.50; p=0.54) intervention phases compared to baseline phase. However, IPC practice was changed in 7.8 and 7.4% of all HOCI cases in rapid and longer-turnaround phases, respectively, and 17.2 and 11.6% of cases where the report was returned. In a 'per-protocol' sensitivity analysis, there was an impact on IPC actions in 20.7% of HOCI cases when the SRT report was returned within 5 days. Capacity to respond effectively to insights from sequencing was breached in most sites by the volume of cases and limited resources. Conclusions: While we did not demonstrate a direct impact of sequencing on the incidence of nosocomial transmission, our results suggest that sequencing can inform IPC response to HOCIs, particularly when returned within 5 days. Funding: COG-UK is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) (grant code: MC_PC_19027), and Genome Research Limited, operating as the Wellcome Sanger Institute. Clinical trial number: NCT04405934.


Subject(s)
COVID-19 , Cross Infection , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Prospective Studies , Infection Control/methods , Cross Infection/epidemiology , Cross Infection/prevention & control , Hospitals
13.
J Antimicrob Chemother ; 77(6): 1685-1693, 2022 05 29.
Article in English | MEDLINE | ID: mdl-35260883

ABSTRACT

OBJECTIVES: To develop a robust phenotypic antimicrobial susceptibility testing (AST) method with a correctly set breakpoint for pretomanid (Pa), the most recently approved anti-tuberculosis drug. METHODS: The Becton Dickinson Mycobacterial Growth Indicator Tube™ (MGIT) system was used at six laboratories to determine the MICs of a phylogenetically diverse collection of 356 Mycobacterium tuberculosis complex (MTBC) strains to establish the epidemiological cut-off value for pretomanid. MICs were correlated with WGS data to study the genetic basis of differences in the susceptibility to pretomanid. RESULTS: We observed ancient differences in the susceptibility to pretomanid among various members of MTBC. Most notably, lineage 1 of M. tuberculosis, which is estimated to account for 28% of tuberculosis cases globally, was less susceptible than lineages 2, 3, 4 and 7 of M. tuberculosis, resulting in a 99th percentile of 2 mg/L for lineage 1 compared with 0.5 mg/L for the remaining M. tuberculosis lineages. Moreover, we observed that higher MICs (≥8 mg/L), which probably confer resistance, had recently evolved independently in six different M. tuberculosis strains. Unlike the aforementioned ancient differences in susceptibility, these recent differences were likely caused by mutations in the known pretomanid resistance genes. CONCLUSIONS: In light of these findings, the provisional critical concentration of 1 mg/L for MGIT set by EMA must be re-evaluated. More broadly, these findings underline the importance of considering the global diversity of MTBC during clinical development of drugs and when defining breakpoints for AST.


Subject(s)
Mycobacterium tuberculosis , Nitroimidazoles , Tuberculosis , Antitubercular Agents/pharmacology , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology
14.
Circ Genom Precis Med ; 15(1): e003391, 2022 02.
Article in English | MEDLINE | ID: mdl-35113648

ABSTRACT

BACKGROUND: Acquired long QT syndrome (aLQTS) is a serious unpredictable adverse drug reaction. Pharmacogenomic markers may predict risk. METHODS: Among 153 aLQTS patients (mean age 58 years [range, 14-88], 98.7% White, 85.6% symptomatic), computational methods identified proteins interacting most significantly with 216 QT-prolonging drugs. All cases underwent sequencing of 31 candidate genes arising from this analysis or associating with congenital LQTS. Variants were filtered using a minor allele frequency <1% and classified for susceptibility for aLQTS. Gene-burden analyses were then performed comparing the primary cohort to control exomes (n=452) and an independent replication aLQTS exome sequencing cohort. RESULTS: In 25.5% of cases, at least one rare variant was identified: 22.2% of cases carried a rare variant in a gene associated with congenital LQTS, and in 4% of cases that variant was known to be pathogenic or likely pathogenic for congenital LQTS; 7.8% cases carried a cytochrome-P450 (CYP) gene variant. Of 12 identified CYP variants, 11 (92%) were in an enzyme known to metabolize at least one culprit drug to which the subject had been exposed. Drug-drug interactions that affected culprit drug metabolism were found in 19% of cases. More than one congenital LQTS variant, CYP gene variant, or drug interaction was present in 7.8% of cases. Gene-burden analyses of the primary cohort compared to control exomes (n=452), and an independent replication aLQTS exome sequencing cohort (n=67) and drug-tolerant controls (n=148) demonstrated an increased burden of rare (minor allele frequency<0.01) variants in CYP genes but not LQTS genes. CONCLUSIONS: Rare susceptibility variants in CYP genes are emerging as potentially important pharmacogenomic risk markers for aLQTS and could form part of personalized medicine approaches in the future.


Subject(s)
Genetic Predisposition to Disease , Long QT Syndrome , Exome/genetics , Gene Frequency , Genetic Testing , Humans , Long QT Syndrome/genetics , Middle Aged
15.
Gigascience ; 112022 02 16.
Article in English | MEDLINE | ID: mdl-35169842

ABSTRACT

BACKGROUND: The Public Health Alliance for Genomic Epidemiology (PHA4GE) (https://pha4ge.org) is a global coalition that is actively working to establish consensus standards, document and share best practices, improve the availability of critical bioinformatics tools and resources, and advocate for greater openness, interoperability, accessibility, and reproducibility in public health microbial bioinformatics. In the face of the current pandemic, PHA4GE has identified a need for a fit-for-purpose, open-source SARS-CoV-2 contextual data standard. RESULTS: As such, we have developed a SARS-CoV-2 contextual data specification package based on harmonizable, publicly available community standards. The specification can be implemented via a collection template, as well as an array of protocols and tools to support both the harmonization and submission of sequence data and contextual information to public biorepositories. CONCLUSIONS: Well-structured, rich contextual data add value, promote reuse, and enable aggregation and integration of disparate datasets. Adoption of the proposed standard and practices will better enable interoperability between datasets and systems, improve the consistency and utility of generated data, and ultimately facilitate novel insights and discoveries in SARS-CoV-2 and COVID-19. The package is now supported by the NCBI's BioSample database.


Subject(s)
COVID-19 , SARS-CoV-2 , Genomics , Humans , Metadata , Public Health , Reproducibility of Results
16.
Sex Transm Infect ; 98(7): 503-509, 2022 11.
Article in English | MEDLINE | ID: mdl-35086915

ABSTRACT

OBJECTIVES: A lactobacilli-dominated vaginal microbiome may protect against pelvic inflammatory disease (PID), but one dominated by Gardnerella species might increase susceptibility. Not all lactobacilli are equally protective. Recent research suggests that D(-) isomer lactic acid producing lactobacilli (Lactobacillus crispatus, Lactobacillus jensenii and Lactobacillus gasseri) may protect against infection with Chlamydia trachomatis, an important cause of PID. Lactobacillus iners , which produces L(+) isomer lactic acid, may be less protective. We investigated the microbiome in stored vaginal samples from participants who did or did not develop PID during the prevention of pelvic infection (POPI) chlamydia screening trial. METHODS: Long-read 16S rRNA gene nanopore sequencing was used on baseline vaginal samples (one per participant) from all 37 women who subsequently developed clinically diagnosed PID during 12-month follow-up, and 111 frequency matched controls who did not, matched on four possible risk factors for PID: age <20 versus ≥20, black ethnicity versus other ethnicity, chlamydia positive versus negative at baseline and ≥2 sexual partners in the previous year versus 0-1 partners. RESULTS: Samples from 106 women (median age 19 years, 40% black ethnicity, 22% chlamydia positive, 54% reporting multiple partners) were suitable for analysis. Three main taxonomic clusters were identified dominated by L. iners, L. crispatus and Gardnerella vaginalis. There was no association between a more diverse, G. vaginalis dominated microbiome and subsequent PID, although increased Shannon diversity was associated with black ethnicity (p=0.002) and bacterial vaginosis (diagnosed by Gram stain p<0.0001). Women who developed PID had similar relative abundance of protective D(-) isomer lactic acid producing lactobacilli to women without PID, but numbers of PID cases were small. CONCLUSIONS: In the first-ever community-based prospective study of PID, there was no clear association between the vaginal microbiome and subsequent development of PID. Future studies using serial samples may identify vaginal microbial communities that may predispose to PID.


Subject(s)
Microbiota , Pelvic Inflammatory Disease , Vaginosis, Bacterial , Humans , Female , Young Adult , Adult , Prospective Studies , Pelvic Inflammatory Disease/epidemiology , RNA, Ribosomal, 16S/genetics , Vagina/microbiology , Vaginosis, Bacterial/microbiology , Microbiota/genetics , Lactic Acid
18.
J Gen Virol ; 102(11)2021 11.
Article in English | MEDLINE | ID: mdl-34723784

ABSTRACT

It is widely recognized that pathogens can be transmitted across the placenta from mother to foetus. Recent re-evaluation of metagenomic studies indicates that the placenta has no unique microbiome of commensal bacteria. However, viral transmission across the placenta, including transmission of DNA viruses such as the human herpesviruses, is possible. A fuller understanding of which DNA virus sequence can be found in the placenta is required. We employed a metagenomic analysis to identify viral DNA sequences in placental metagenomes from full-term births (20 births), pre-term births (13 births), births from pregnancies associated with antenatal infections (12 births) or pre-term births with antenatal infections (three births). Our analysis found only a small number of DNA sequences corresponding to the genomes of human herpesviruses in four of the 48 metagenomes analysed. Therefore, our data suggest that DNA virus infection of the placenta is rare and support the concept that the placenta is largely free of pathogen infection.


Subject(s)
DNA Virus Infections/virology , DNA Viruses/genetics , Metagenome , Placenta/virology , DNA Viruses/classification , DNA Viruses/isolation & purification , Female , Genome, Viral , Humans , Infant, Newborn , Male , Pregnancy , Pregnancy Complications/virology , Premature Birth , Term Birth
19.
J Infect ; 83(6): 693-700, 2021 12.
Article in English | MEDLINE | ID: mdl-34610391

ABSTRACT

OBJECTIVES: Recently emerging SARS-CoV-2 variants have been associated with an increased rate of transmission within the community. We sought to determine whether this also resulted in increased transmission within hospitals. METHODS: We collected viral sequences and epidemiological data of patients with community and healthcare associated SARS-CoV-2 infections, sampled from 16th November 2020 to 10th January 2021, from nine hospitals participating in the COG-UK HOCI study. Outbreaks were identified using ward information, lineage and pairwise genetic differences between viral sequences. RESULTS: Mixed effects logistic regression analysis of 4184 sequences showed healthcare-acquired infections were no more likely to be identified as the Alpha variant than community acquired infections. Nosocomial outbreaks were investigated based on overlapping ward stay and SARS-CoV-2 genome sequence similarity. There was no significant difference in the number of patients involved in outbreaks caused by the Alpha variant compared to outbreaks caused by other lineages. CONCLUSIONS: We find no evidence to support it causing more nosocomial transmission than previous lineages. This suggests that the stringent infection prevention measures already in place in UK hospitals contained the spread of the Alpha variant as effectively as other less transmissible lineages, providing reassurance of their efficacy against emerging variants of concern.


Subject(s)
COVID-19 , Cross Infection , Cross Infection/epidemiology , Hospitals , Humans , SARS-CoV-2 , United Kingdom/epidemiology
20.
BMJ Open Respir Res ; 8(1)2021 09.
Article in English | MEDLINE | ID: mdl-34544733

ABSTRACT

BACKGROUND: SARS-CoV-2 lineage B.1.1.7 has been associated with an increased rate of transmission and disease severity among subjects testing positive in the community. Its impact on hospitalised patients is less well documented. METHODS: We collected viral sequences and clinical data of patients admitted with SARS-CoV-2 and hospital-onset COVID-19 infections (HOCIs), sampled 16 November 2020 to 10 January 2021, from eight hospitals participating in the COG-UK-HOCI study. Associations between the variant and the outcomes of all-cause mortality and intensive therapy unit (ITU) admission were evaluated using mixed effects Cox models adjusted by age, sex, comorbidities, care home residence, pregnancy and ethnicity. FINDINGS: Sequences were obtained from 2341 inpatients (HOCI cases=786) and analysis of clinical outcomes was carried out in 2147 inpatients with all data available. The HR for mortality of B.1.1.7 compared with other lineages was 1.01 (95% CI 0.79 to 1.28, p=0.94) and for ITU admission was 1.01 (95% CI 0.75 to 1.37, p=0.96). Analysis of sex-specific effects of B.1.1.7 identified increased risk of mortality (HR 1.30, 95% CI 0.95 to 1.78, p=0.096) and ITU admission (HR 1.82, 95% CI 1.15 to 2.90, p=0.011) in females infected with the variant but not males (mortality HR 0.82, 95% CI 0.61 to 1.10, p=0.177; ITU HR 0.74, 95% CI 0.52 to 1.04, p=0.086). INTERPRETATION: In common with smaller studies of patients hospitalised with SARS-CoV-2, we did not find an overall increase in mortality or ITU admission associated with B.1.1.7 compared with other lineages. However, women with B.1.1.7 may be at an increased risk of admission to intensive care and at modestly increased risk of mortality.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/virology , COVID-19 Testing , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Severity of Illness Index , United Kingdom , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...