Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 73(21): 5005-14, 2001 Nov 01.
Article in English | MEDLINE | ID: mdl-11721892

ABSTRACT

Fused-silica capillary LC columns (25-microm i.d.) with 3-microm-i.d. integrated electrospray emitters interfaced to a quadrupole ion trap mass spectrometer were evaluated for high-sensitivity LC-MS2. Column preparation involved constructing frits by in situ photopolymerization of glycidyl methacrylate and trimethylolpropane trimethacrylate, preparing the electrospray emitter by pulling the column outlet to a fine tip with a CO2 laser puller, and slurry-packing the column with 5-microm reversed-phase particles. Large-volume injections were facilitated by an automated two-pump system that allowed high-flow rates for sample loading and low-flow rates for elution. Small electrospray emitters, low elution flow rates, and optimization of gradient steepness allowed a detection limit of 4 amol, corresponding to 2 pM for 1.8 microL injected on-column, for a mixture of peptides dissolved in artificial cerebral spinal fluid. The system was coupled on-line to microdialysis sampling and was used to monitor and discover endogenous neuropeptides from the globus pallidus of anesthetized male Sprague-Dawley rats. Time-segmented MS2 scans enabled simultaneous monitoring of Met-enkephalin, Leu-enkephalin, and unknown peptides. Basal dialysate levels of Met-enkephalin and Leu-enkephalin were 60 +/- 30 and 70 +/- 20 pM while K+-stimulated levels were 1,900 +/- 500 and 1,300 +/- 300 pM, respectively (n = 7). Data-dependent and time-segmented MS2 scans revealed several unknown peptides that were present in dialysate. One of the unknowns was identified as peptide I(1-10) (SPQLEDEAKE), a novel product of preproenkephalin A processing, using MS2, MS3, and database searching.


Subject(s)
Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Microdialysis/instrumentation , Microdialysis/methods , Peptides/isolation & purification , Spectrometry, Mass, Electrospray Ionization/instrumentation , Spectrometry, Mass, Electrospray Ionization/methods , Amino Acid Sequence , Animals , Enkephalins/chemistry , Enkephalins/metabolism , Male , Molecular Sequence Data , Peptide Fragments/analysis , Peptides/chemistry , Protein Precursors/chemistry , Protein Precursors/metabolism , Rats , Rats, Sprague-Dawley
2.
Anal Chem ; 72(4): 865-71, 2000 Feb 15.
Article in English | MEDLINE | ID: mdl-10701275

ABSTRACT

A sensitive method was developed to determine 16 amino acids, including all the neurotransmitter amino acids and neuromodulators, in physiological samples. Samples were derivatized with o-phthalaldehyde/tert-butyl thiol followed by two scavenging reactions that reduced the chemical background caused by excess derivatization reagent by approximately 90%. A total of 250 nL of the derivatized sample was injected and concentrated onto a 50-micron-inner diameter capillary column packed with 5-micron reversed-phase particles and separated using gradient elution. Analytes were detected amperometrically at a cylindrical 9-micron carbon fiber microelectrode. The combination of on-column concentration, scavenging reactions after derivatization, high sensitivity electrochemical detection, and protocols to minimize amine contamination allowed detection limits of 90-350 pM (20-80 amol) for all the amino acids tested. This method was used to analyze in vivo microdialysate samples from probes implanted in the striatum of anesthetized rats. Probes were perfused at 1.2 microL/min and fractions collected every 10 s. The 200-nL fractions were diluted to 2 microL to facilitate sample handling for off-line analysis. The suitability of this method for simultaneous monitoring of all the major amino acid neurotransmitters with 10-s temporal resolution under basal conditions, during potassium stimulation, and during selective uptake inhibition of gamma-aminobutyric acid is demonstrated.


Subject(s)
Amino Acids/analysis , Chromatography, Liquid/methods , Microdialysis/methods , Animals , Electrochemistry/methods , Male , Neurotransmitter Agents/analysis , Rats , Rats, Sprague-Dawley , Sensitivity and Specificity
3.
Anal Chem ; 71(5): 987-94, 1999 Mar 01.
Article in English | MEDLINE | ID: mdl-10079760

ABSTRACT

The separation and detection of biuret complexes of neuropeptides by capillary liquid chromatography with electrochemical detection was explored. Capillaries of 25-micron inner diameter packed with base-resistant, polymer-based reversed-phase particles were used for separation, and C-fiber electrodes were used for detection. Detection at the C-fiber electrode was found to have some differences in relative sensitivity for peptides compared to glassy carbon electrodes used previously. On-column preconcentration of preformed complexes allowed up to 1-microL samples to be injected with minimal band broadening resulting in a 100-fold improvement in concentration detection limit with no effect on mass detection limit. Concentration detection limits ranged from 5 to 59 pM, depending upon the peptide, corresponding to 5-59 amol injected. The low concentration detection limit was possible because of minimal baseline disturbances, minimal formation of unwanted products, and high efficiency of complex formation associated with biuret derivatization. The method was applied to determination of vasopressin and bradykinin in dialysates collected with 5-min sampling frequency from the rat supraoptic nucleus.


Subject(s)
Peptides/analysis , Animals , Chromatography, Liquid , Electrochemistry , Indicators and Reagents , Nerve Fibers , Rats , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...