Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Acta Physiol (Oxf) ; 240(3): e14086, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38240350

ABSTRACT

AIM: Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are intracellular Ca2+ -release channels with crucial roles in cell function. Current IP3 R inhibitors suffer from off-target effects and poor selectivity towards the three distinct IP3 R subtypes. We developed a novel peptide inhibitor of IP3 Rs and determined its effect on connexin-43 (Cx43) hemichannels, which are co-activated by IP3 R stimulation. METHODS: IP3RPEP6 was developed by in silico molecular docking studies and characterized by on-nucleus patch-clamp experiments of IP3 R2 channels and carbachol-induced IP3 -mediated Ca2+ responses in IP3 R1, 2 or 3 expressing cells, triple IP3 R KO cells and astrocytes. Cx43 hemichannels were studied by patch-clamp and ATP-release approaches, and by inhibition with Gap19 peptide. IP3RPEP6 interactions with IP3 Rs were verified by co-immunoprecipitation and affinity pull-down assays. RESULTS: IP3RPEP6 concentration-dependently reduced the open probability of IP3 R2 channels and competitively inhibited IP3 Rs in an IC50 order of IP3 R2 (~3.9 µM) < IP3 R3 (~4.3 µM) < IP3 R1 (~9.0 µM), without affecting Cx43 hemichannels or ryanodine receptors. IP3RPEP6 co-immunoprecipitated with IP3 R2 but not with IP3 R1; interaction with IP3 R3 varied between cell types. The IC50 of IP3RPEP6 inhibition of carbachol-induced Ca2+ responses decreased with increasing cellular Cx43 expression. Moreover, Gap19-inhibition of Cx43 hemichannels significantly reduced the amplitude of the IP3 -Ca2+ responses and strongly increased the EC50 of these responses. Finally, we identified palmitoyl-8G-IP3RPEP6 as a membrane-permeable IP3RPEP6 version allowing extracellular application of the IP3 R-inhibiting peptide. CONCLUSION: IP3RPEP6 inhibits IP3 R2/R3 at concentrations that have limited effects on IP3 R1. IP3 R activation triggers hemichannel opening, which strongly affects the amplitude and concentration-dependence of IP3 -triggered Ca2+ responses.


Subject(s)
Connexin 43 , Peptides , Molecular Docking Simulation , Carbachol/pharmacology , Peptides/pharmacology , Peptides/metabolism , Astrocytes/metabolism
2.
Open Biol ; 13(11): 230258, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37907090

ABSTRACT

Classically associated with gap junction-mediated intercellular communication, connexin43 (Cx43) is increasingly recognized to possess non-canonical biological functions, including gene expression regulation. However, the mechanisms governing the localization and role played by Cx43 in the nucleus, namely in transcription modulation, remain unknown. Using comprehensive and complementary approaches encompassing biochemical assays, super-resolution and immunogold transmission electron microscopy, we demonstrate that Cx43 localizes to the nuclear envelope of different cell types and in cardiac tissue. We show that translocation of Cx43 to the nucleus relies on Importin-ß, and that Cx43 significantly impacts the cellular transcriptome, likely by interacting with transcriptional regulators. In vitro patch-clamp recordings from HEK293 and adult primary cardiomyocytes demonstrate that Cx43 forms active channels at the nuclear envelope, providing evidence that Cx43 can participate in nucleocytoplasmic shuttling of small molecules. The accumulation of nuclear Cx43 during myogenic differentiation of cardiomyoblasts is suggested to modulate expression of genes implicated in this process. Altogether, our study provides new evidence for further defining the biological roles of nuclear Cx43, namely in cardiac pathophysiology.


Subject(s)
Connexin 43 , Nuclear Envelope , Humans , Cell Communication , Connexin 43/genetics , Connexin 43/metabolism , Gene Expression , HEK293 Cells , Myocytes, Cardiac/metabolism , Nuclear Envelope/metabolism
3.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511370

ABSTRACT

Cx43 hemichannels (HCs) and Panx1 channels are two genetically distant protein families. Despite the lack of sequence homology, Cx43 and Panx1 channels have been the subject of debate due to their overlapping expression and the fact that both channels present similarities in terms of their membrane topology and electrical properties. Using the mimetic peptides Gap19 and 10Panx1, this study aimed to investigate the cross-effects of these peptides on Cx43 HCs and Panx1 channels. The single-channel current activity from stably expressing HeLa-Cx43 and C6-Panx1 cells was recorded using patch-clamp experiments in whole-cell voltage-clamp mode, demonstrating 214 pS and 68 pS average unitary conductances for the respective channels. Gap19 was applied intracellularly while 10Panx1 was applied extracellularly at different concentrations (100, 200 and 500 µM) and the average nominal open probability (NPo) was determined for each testing condition. A concentration of 100 µM Gap19 more than halved the NPo of Cx43 HCs, while 200 µM 10Panx1 was necessary to obtain a half-maximal NPo reduction in the Panx1 channels. Gap19 started to significantly inhibit the Panx1 channels at 500 µM, reducing the NPo by 26% while reducing the NPo of the Cx43 HCs by 84%. In contrast 10Panx1 significantly reduced the NPo of the Cx43 HCs by 37% at 100 µM and by 83% at 200 µM, a concentration that caused the half-maximal inhibition of the Panx1 channels. These results demonstrate that 10Panx1 inhibits Cx43 HCs over the 100-500 µM concentration range while 500 µM intracellular Gap19 is necessary to observe some inhibition of Panx1 channels.


Subject(s)
Connexin 43 , Gap Junctions , Humans , Connexin 43/metabolism , Gap Junctions/metabolism , HeLa Cells , Peptides/pharmacology , Peptides/metabolism
4.
J Clin Invest ; 133(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36919695

ABSTRACT

Connexins are crucial cardiac proteins that form hemichannels and gap junctions. Gap junctions are responsible for the propagation of electrical and chemical signals between myocardial cells and cells of the specialized conduction system in order to synchronize the cardiac cycle and steer cardiac pump function. Gap junctions are normally open, while hemichannels are closed, but pathological circumstances may close gap junctions and open hemichannels, thereby perturbing cardiac function and homeostasis. Current evidence demonstrates an emerging role of hemichannels in myocardial ischemia and arrhythmia, and tools are now available to selectively inhibit hemichannels without inhibiting gap junctions as well as to stimulate hemichannel incorporation into gap junctions. We review available experimental evidence for hemichannel contributions to cellular pro-arrhythmic events in ventricular and atrial cardiomyocytes, and link these to insights at the level of molecular control of connexin-43-based hemichannel opening. We conclude that a double-edged approach of both preventing hemichannel opening and preserving gap junctional function will be key for further research and development of new connexin-based experimental approaches for treating heart disease.


Subject(s)
Heart Diseases , Myocardial Ischemia , Humans , Connexins/genetics , Connexins/metabolism , Anti-Arrhythmia Agents/metabolism , Gap Junctions/metabolism , Myocardial Ischemia/drug therapy , Myocardial Ischemia/metabolism , Heart Diseases/metabolism
5.
JCI Insight ; 7(16)2022 08 22.
Article in English | MEDLINE | ID: mdl-35881483

ABSTRACT

The blood-brain barrier is formed by capillary endothelial cells expressing connexin 37 (Cx37), Cx40, and Cx43 and is joined by closely apposed astrocytes expressing Cx43 and Cx30. We investigated whether connexin-targeting peptides could limit barrier leakage triggered by LPS-induced systemic inflammation in mice. Intraperitoneal LPS administration increased endothelial and astrocytic Cx43 expression; elevated TNF-α, IL-1ß, IFN-γ, and IL-6 in plasma and IL-6 in the brain; and induced barrier leakage recorded over 24 hours. Barrier leakage was largely prevented by global Cx43 knockdown and Cx43/Cx30 double knockout in astrocytes, slightly diminished by endothelial Cx43 knockout, and not protected by global Cx30 knockout. Intravenous administration of Gap27 or Tat-Gap19 peptides just before LPS also prevented barrier leakage, and intravenously administered BAPTA-AM to chelate intracellular calcium was equally effective. Patch-clamp experiments demonstrated LPS-induced Cx43 hemichannel opening in endothelial cells, which was suppressed by Gap27, Gap19, and BAPTA. LPS additionally triggered astrogliosis that was prevented by intravenous Tat-Gap19 or BAPTA-AM. Cortically applied Tat-Gap19 or BAPTA-AM to primarily target astrocytes also strongly diminished barrier leakage. In vivo dye uptake and in vitro patch-clamp showed Cx43 hemichannel opening in astrocytes that was induced by IL-6 in a calcium-dependent manner. We conclude that targeting endothelial and astrocytic connexins is a powerful approach to limit barrier failure and astrogliosis.


Subject(s)
Blood-Brain Barrier , Connexin 43 , Animals , Blood-Brain Barrier/metabolism , Calcium/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Connexins/genetics , Connexins/metabolism , Endothelial Cells/metabolism , Gliosis/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/toxicity , Mice , Peptides/metabolism
6.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33621213

ABSTRACT

Cx43, a major cardiac connexin, forms precursor hemichannels that accrue at the intercalated disc to assemble as gap junctions. While gap junctions are crucial for electrical conduction in the heart, little is known about the potential roles of hemichannels. Recent evidence suggests that inhibiting Cx43 hemichannel opening with Gap19 has antiarrhythmic effects. Here, we used multiple electrophysiology, imaging, and super-resolution techniques to understand and define the conditions underlying Cx43 hemichannel activation in ventricular cardiomyocytes, their contribution to diastolic Ca2+ release from the sarcoplasmic reticulum, and their impact on electrical stability. We showed that Cx43 hemichannels were activated during diastolic Ca2+ release in single ventricular cardiomyocytes and cardiomyocyte cell pairs from mice and pigs. This activation involved Cx43 hemichannel Ca2+ entry and coupling to Ca2+ release microdomains at the intercalated disc, resulting in enhanced Ca2+ dynamics. Hemichannel opening furthermore contributed to delayed afterdepolarizations and triggered action potentials. In single cardiomyocytes, cardiomyocyte cell pairs, and arterially perfused tissue wedges from failing human hearts, increased hemichannel activity contributed to electrical instability compared with nonfailing rejected donor hearts. We conclude that microdomain coupling between Cx43 hemichannels and Ca2+ release is a potentially novel, targetable mechanism of cardiac arrhythmogenesis in heart failure.


Subject(s)
Calcium Signaling , Calcium/metabolism , Connexin 43/metabolism , Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Connexin 43/genetics , Gap Junctions/genetics , Gap Junctions/metabolism , Mice , Mice, Knockout , Sarcoplasmic Reticulum/genetics , Swine
7.
Cardiovasc Res ; 117(1): 123-136, 2021 01 01.
Article in English | MEDLINE | ID: mdl-31841141

ABSTRACT

AIMS: Connexin-based gap junctions are crucial for electrical communication in the heart; they are each composed of two docked hemichannels (HCs), supplied as unpaired channels via the sarcolemma. When open, an unpaired HC forms a large pore, high-conductance and Ca2+-permeable membrane shunt pathway that may disturb cardiomyocyte function. HCs composed of connexin 43 (Cx43), a major cardiac connexin, can be opened by electrical stimulation but only by very positive membrane potentials. Here, we investigated the activation of Cx43 HCs in murine ventricular cardiomyocytes voltage-clamped at -70 mV. METHODS AND RESULTS: Using whole-cell patch-clamp, co-immunoprecipitation, western blot analysis, immunocytochemistry, proximity ligation assays, and protein docking studies, we found that stimulation of ryanodine receptors (RyRs) triggered unitary currents with a single-channel conductance of ∼220 pS, which were strongly reduced by Cx43 knockdown. Recordings under Ca2+-clamp conditions showed that both RyR activation and intracellular Ca2+ elevation were necessary for HC opening. Proximity ligation studies indicated close Cx43-RyR2 apposition (<40 nm), and both proteins co-immunoprecipitated indicating physical interaction. Molecular modelling suggested a strongly conserved RyR-mimicking peptide sequence (RyRHCIp), which inhibited RyR/Ca2+ HC activation but not voltage-triggered activation. The peptide also slowed down action potential repolarization. Interestingly, alterations in the concerned RyR sequence are known to be associated with primary familial hypertrophic cardiomyopathy. CONCLUSION: Our results demonstrate that Cx43 HCs are intimately linked to RyRs, allowing them to open at negative diastolic membrane potential in response to RyR activation.


Subject(s)
Calcium Signaling , Calcium/metabolism , Connexin 43/metabolism , Gap Junctions/metabolism , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Action Potentials , Animals , Calcium Channel Agonists/pharmacology , Calcium Signaling/drug effects , Connexin 43/genetics , Gap Junctions/drug effects , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Docking Simulation , Myocytes, Cardiac/drug effects , Protein Binding , Ryanodine Receptor Calcium Release Channel/drug effects
8.
Int J Mol Sci ; 21(19)2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33027889

ABSTRACT

Cx43 hemichannels (HCs) are electrically and chemically gated transmembrane pores with low open probability and multiple conductance states, which makes kinetic studies of channel gating in large datasets challenging. Here, we developed open access software, named HemiGUI, to analyze HC gating transitions and investigated voltage-induced HC opening based on up to ≈4000 events recorded in HeLa-Cx43-overexpressing cells. We performed a detailed characterization of Cx43 HC gating profiles and specifically focused on the role of the C-terminal tail (CT) domain by recording the impact of adding an EGFP tag to the Cx43 CT end (Cx43-EGFP) or by supplying the Cx43 HC-inhibiting peptide Gap19 that interferes with CT interaction with the cytoplasmic loop (CL). We found that Gap19 not only decreased HC opening activity to the open state (≈217 pS) but also increased the propensity of subconductance (≈80 pS) transitions that additionally became slower as compared to the control. The work demonstrates that large sample transition analysis allows detailed investigations on Cx43 HC gating and shows that Gap19 acts as a HC gating modifier by interacting with the CT that forms a crucial gating element.


Subject(s)
Connexin 43/chemistry , Green Fluorescent Proteins/chemistry , Ion Channel Gating/genetics , Software , Connexin 43/antagonists & inhibitors , Gap Junctions , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , Kinetics , Peptides/chemistry
9.
J Physiol ; 597(10): 2691-2705, 2019 05.
Article in English | MEDLINE | ID: mdl-30907436

ABSTRACT

KEY POINTS: There are two subtypes of trimeric intracellular cation (TRIC) channels but their distinct single-channel properties and physiological regulation have not been characterized. We examined the differences in function between native skeletal muscle sarcoplasmic reticulum (SR) K+ -channels from wild-type (WT) mice (where TRIC-A is the principal subtype) and from Tric-a knockout (KO) mice that only express TRIC-B. We find that lone SR K+ -channels from Tric-a KO mice have a lower open probability and gate more frequently in subconducting states than channels from WT mice but, unlike channels from WT mice, multiple channels gate with high open probability with a more than six-fold increase in activity when four channels are present in the bilayer. No evidence was found for a direct gating interaction between ryanodine receptor and SR K+ -channels in Tric-a KO SR, suggesting that TRIC-B-TRIC-B interactions are highly specific and may be important for meeting counterion requirements during excitation-contraction coupling in tissues where TRIC-A is sparse or absent. ABSTRACT: The trimeric intracellular cation channels, TRIC-A and TRIC-B, represent two subtypes of sarcoplasmic reticulum (SR) K+ -channel but their individual functional roles are unknown. We therefore compared the biophysical properties of SR K+ -channels derived from the skeletal muscle of wild-type (WT) or Tric-a knockout (KO) mice. Because TRIC-A is the major TRIC-subtype in skeletal muscle, WT SR will predominantly contain TRIC-A channels, whereas Tric-a KO SR will only contain TRIC-B channels. When lone SR K+ -channels were incorporated into bilayers, the open probability (Po) of channels from Tric-a KO mice was markedly lower than that of channels from WT mice; gating was characterized by shorter opening bursts and more frequent brief subconductance openings. However, unlike channels from WT mice, the Po of SR K+ -channels from Tric-a KO mice increased as increasing channel numbers were present in the bilayer, driving the channels into long sojourns in the fully open state. When co-incorporated into bilayers, ryanodine receptor channels did not directly affect the gating of SR K+ -channels, nor did the presence or absence of SR K+ -channels influence ryanodine receptor activity. We suggest that because of high expression levels in striated muscle, TRIC-A produces most of the counterion flux required during excitation-contraction coupling. TRIC-B, in contrast, is sparsely expressed in most cells and, although lone TRIC-B channels exhibit low Po, the high Po levels reached by multiple TRIC-B channels may provide a compensatory mechanism to rapidly restore K+ gradients and charge differences across the SR of tissues containing few TRIC-A channels.


Subject(s)
Endoplasmic Reticulum/metabolism , Ion Channels/metabolism , Muscle, Skeletal/physiology , Sarcoplasmic Reticulum/metabolism , Animals , Female , Ion Channels/genetics , Ion Exchange , Male , Mice , Mice, Knockout , Potassium Channels, Voltage-Gated/physiology
10.
Br J Pharmacol ; 175(6): 938-952, 2018 03.
Article in English | MEDLINE | ID: mdl-29278865

ABSTRACT

BACKGROUND AND PURPOSE: Statins are amongst the most widely prescribed drugs for those at risk of cardiovascular disease, lowering cholesterol levels by inhibiting 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. Although effective at preventing cardiovascular disease, statin use is associated with muscle weakness, myopathies and, occasionally, fatal rhabdomyolysis. As simvastatin, a commonly prescribed statin, promotes Ca2+ release from sarcoplasmic reticulum (SR) vesicles, we investigated if simvastatin directly activates skeletal (RyR1) and cardiac (RyR2) ryanodine receptors. EXPERIMENTAL APPROACH: RyR1 and RyR2 single-channel behaviour was investigated after incorporation of sheep cardiac or mouse skeletal SR into planar phospholipid bilayers under voltage-clamp conditions. LC-MS was used to monitor the kinetics of interconversion of simvastatin between hydroxy-acid and lactone forms during these experiments. Cardiac and skeletal myocytes were permeabilised to examine simvastatin modulation of SR Ca2+ release. KEY RESULTS: Hydroxy acid simvastatin (active at HMG-CoA reductase) significantly and reversibly increased RyR1 open probability (Po) and shifted the distribution of Ca2+ spark frequency towards higher values in skeletal fibres. In contrast, simvastatin reduced RyR2 Po and shifted the distribution of spark frequency towards lower values in ventricular cardiomyocytes. The lactone pro-drug form of simvastatin (inactive at HMG-CoA reductase) also activated RyR1, suggesting that the HMG-CoA inhibitor pharmacophore was not responsible for RyR1 activation. CONCLUSION AND IMPLICATIONS: Simvastatin interacts with RyR1 to increase SR Ca2+ release and thus may contribute to its reported adverse effects on skeletal muscle. The ability of low concentrations of simvastatin to reduce RyR2 Po may also protect against Ca2+ -dependent arrhythmias and sudden cardiac death.


Subject(s)
Calcium/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Ryanodine Receptor Calcium Release Channel/drug effects , Simvastatin/analogs & derivatives , Animals , Female , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Rats , Rats, Wistar , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sheep , Simvastatin/pharmacology
11.
J Physiol ; 595(14): 4769-4784, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28387457

ABSTRACT

KEY POINTS: The role of trimeric intracellular cation (TRIC) channels is not known, although evidence suggests they may regulate ryanodine receptors (RyR) via multiple mechanisms. We therefore investigated whether Tric-a gene knockout (KO) alters the single-channel function of skeletal RyR (RyR1). We find that RyR1 from Tric-a KO mice are more sensitive to inhibition by divalent cations, although they respond normally to cytosolic Ca2+ , ATP, caffeine and luminal Ca2+ . In the presence of Mg2+ , ATP cannot effectively activate RyR1 from Tric-a KO mice. Additionally, RyR1 from Tric-a KO mice are not activated by protein kinase A phosphorylation, demonstrating a defect in the ability of ß-adrenergic stimulation to regulate sarcoplasmic reticulum (SR) Ca2+ -release. The defective RyR1 gating that we describe probably contributes significantly to the impaired SR Ca2+ -release observed in skeletal muscle from Tric-a KO mice, further highlighting the importance of TRIC-A for normal physiological regulation of SR Ca2+ -release in skeletal muscle. ABSTRACT: The type A trimeric intracellular cation channel (TRIC-A) is a major component of the nuclear and sarcoplasmic reticulum (SR) membranes of cardiac and skeletal muscle, and is localized closely with ryanodine receptor (RyR) channels in the SR terminal cisternae. The skeletal muscle of Tric-a knockout (KO) mice is characterized by Ca2+ overloaded and swollen SR and by changes in the properties of SR Ca2+ release. We therefore investigated whether RyR1 gating behaviour is modified in the SR from Tric-a KO mice by incorporating native RyR1 into planar phospholipid bilayers under voltage-clamp conditions. We find that RyR1 channels from Tric-a KO mice respond normally to cytosolic Ca2+ , ATP, adenine, caffeine and to luminal Ca2+ . However, the channels are more sensitive to the inactivating effects of divalent cations, thus, in the presence of Mg2+ , ATP is inadequate as an activator. Additionally, channels are not characteristically activated by protein kinase A even though the phosphorylation levels of Ser2844 are similar to controls. The results of the present study suggest that TRIC-A functions as an excitatory modulator of RyR1 channels within the SR terminal cisternae. Importantly, this regulatory action of TRIC-A appears to be independent of (although additive to) any indirect consequences to RyR1 activity that arise as a result of K+ fluxes across the SR via TRIC-A.


Subject(s)
Ion Channels/physiology , Muscle, Skeletal/physiology , Ryanodine Receptor Calcium Release Channel/physiology , Adenine/pharmacology , Adenosine Triphosphate/pharmacology , Animals , CHO Cells , Caffeine/pharmacology , Calcium/pharmacology , Cricetulus , Cyclic AMP-Dependent Protein Kinases/physiology , Cytosol/physiology , Ion Channels/genetics , Magnesium/pharmacology , Mice, Knockout , Mutation
12.
Neuropharmacology ; 93: 294-307, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25724085

ABSTRACT

The ankyrin transient receptor potential channel TRPA1 is a polymodal sensor for noxious stimuli, and hence a promising target for treating chronic pain. This tetrameric six-transmembrane segment (S1-S6) channel can be activated by various pungent chemicals, such as allyl isothiocyanate or cinnamaldehyde, but also by intracellular Ca(2+) or depolarizing voltages. Within the S4-S5 linker of human TRPA1, a gain-of-function mutation, N855S, was recently found to underlie familial episodic pain syndrome, manifested by bouts of severe upper body pain, triggered by physical stress, fasting, or cold. To clarify the structural basis for this channelopathy, we derive a structural model of TRPA1 by combining homology modeling, molecular dynamics simulations, point mutagenesis and electrophysiology. In the vicinity of N855, the model reveals inter-subunit salt bridges between E854 and K868. Using the heterologous expression of recombinant wild-type and mutant TRPA1 channels in HEK293T cells, we indeed found that the charge-reversal mutants E854R and K868E exhibited dramatically reduced responses to chemical and voltage stimuli, whereas the charge-swapping mutation E854R/K868E substantially rescued their functionalities. Moreover, mutation analysis of highly conserved charged residues within the S4-S5 region revealed a gain-of-function phenotype for R852E with an increased basal channel activity, a loss of Ca(2+)-induced potentiation and an accelerated Ca(2+)-dependent inactivation. Based on the model and on a comparison with the recently revealed atomic-level structure of the related channel TRPV1, we propose that inter-subunit salt bridges between adjacent S4-S5 regions are crucial for stabilizing the conformations associated with chemically and voltage-induced gating of the TRPA1 ion channel.


Subject(s)
Calcium Channels/chemistry , Calcium Channels/genetics , Ion Channel Gating/physiology , Membrane Potentials/genetics , Models, Molecular , Mutation/genetics , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Transient Receptor Potential Channels/chemistry , Transient Receptor Potential Channels/genetics , Amino Acid Sequence , Animals , Asparagine/genetics , Calcium/metabolism , Calcium Channels/metabolism , Electric Stimulation , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Isothiocyanates/pharmacology , Mutagenesis , Nerve Tissue Proteins/metabolism , Patch-Clamp Techniques , Protein Structure, Tertiary , Serine/genetics , TRPA1 Cation Channel , Transfection , Transient Receptor Potential Channels/metabolism
13.
Biochim Biophys Acta ; 1848(5): 1147-56, 2015 May.
Article in English | MEDLINE | ID: mdl-25687973

ABSTRACT

The transient receptor potential ankyrin 1 channel (TRPA1) belongs to the TRP cation channel superfamily that responds to a panoply of stimuli such as changes in temperature, calcium levels, reactive oxygen and nitrogen species and lipid mediators among others. The TRP superfamily has been implicated in diverse pathological states including neurodegenerative disorders, kidney diseases, inflammation, pain and cancer. The intracellular C-terminus is an important regulator of TRP channel activity. Studies with this and other TRP superfamily members have shown that the C-terminus association with lipid bilayer alters channel sensitivity and activation, especially interactions occurring through basic residues. Nevertheless, it is not yet clear how this process takes place and which regions in the C-terminus would be responsible for such membrane recognition. With that in mind, herein the first putative membrane interacting region of the C-terminus of human TRPA1, (corresponding to a 29 residue peptide, IAEVQKHASLKRIAMQVELHTSLEKKLPL) named H1 due to its potential helical character was chosen for studies of membrane interaction. The affinity of H1 to lipid membranes, H1 structural changes occurring upon this interaction as well as effects of this interaction in lipid organization and integrity were investigated using a biophysical approach. Lipid models systems composed of zwitterionic and anionic lipids, namely those present in the lipid membrane inner leaflet, where H1 is prone to interact, where used. The study reveals a strong interaction and affinity of H1 as well as peptide structuration especially with membranes containing anionic lipids. Moreover, the interactions and peptide structure adoption are headgroup specific.


Subject(s)
Calcium Channels/metabolism , Cell Membrane/metabolism , Membrane Lipids/metabolism , Membranes, Artificial , Nerve Tissue Proteins/metabolism , Peptide Fragments/metabolism , Transient Receptor Potential Channels/metabolism , Anisotropy , Buffers , Calcium Channels/chemistry , Cell Membrane/chemistry , Humans , Hydrogen-Ion Concentration , Membrane Lipids/chemistry , Nerve Tissue Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemistry , Phase Transition , Protein Binding , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Structure-Activity Relationship , TRPA1 Cation Channel , Transient Receptor Potential Channels/chemistry
14.
Biochim Biophys Acta ; 1818(5): 1123-34, 2012 May.
Article in English | MEDLINE | ID: mdl-22305677

ABSTRACT

In this article we compare electrical conductance events from single channel recordings of three TRP channel proteins (TRPA1, TRPM2 and TRPM8) expressed in human embryonic kidney cells with channel events recorded on synthetic lipid membranes close to melting transitions. Ion channels from the TRP family are involved in a variety of sensory processes including thermo- and mechano-reception. Synthetic lipid membranes close to phase transitions display channel-like events that respond to stimuli related to changes in intensive thermodynamic variables such as pressure and temperature. TRP channel activity is characterized by typical patterns of current events dependent on the type of protein expressed. Synthetic lipid bilayers show a wide spectrum of electrical phenomena that are considered typical for the activity of protein ion channels. We find unitary currents, burst behavior, flickering, multistep-conductances, and spikes behavior in both preparations. Moreover, we report conductances and lifetimes for lipid channels as described for protein channels. Non-linear and asymmetric current-voltage relationships are seen in both systems. Without further knowledge of the recording conditions, no easy decision can be made whether short current traces originate from a channel protein or from a pure lipid membrane.


Subject(s)
Calcium Channels/chemistry , Cell Membrane/chemistry , Lipid Bilayers/chemistry , Nerve Tissue Proteins/chemistry , TRPM Cation Channels/chemistry , Transient Receptor Potential Channels/chemistry , Calcium Channels/genetics , Calcium Channels/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , HeLa Cells , Humans , Ion Transport/physiology , Lipid Bilayers/metabolism , Membrane Potentials/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , TRPA1 Cation Channel , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism
15.
J Biol Chem ; 285(35): 26806-26814, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20587417

ABSTRACT

The closely related cation channels TRPM2 and TRPM8 show completely different requirements for stimulation and are regulated by Ca(2+) in an opposite manner. TRPM8 is basically gated in a voltage-dependent process enhanced by cold temperatures and cooling compounds such as menthol and icilin. The putative S4 voltage sensor of TRPM8 is closely similar to that of TRPM2, which, however, is mostly devoid of voltage sensitivity. To gain insight into principal interactions of critical channel domains during the gating process, we created chimeras in which the entire S5-pore-S6 domains were reciprocally exchanged. The chimera M2-M8P (i.e. TRPM2 with the pore of TRPM8) responded to ADP-ribose and hydrogen peroxide and was regulated by extracellular and intracellular Ca(2+) as was wild-type TRPM2. Single-channel recordings revealed the characteristic pattern of TRPM2 with extremely long open times. Only at far-negative membrane potentials (-120 to -140 mV) did differences become apparent because currents were reduced by hyperpolarization in M2-M8P but not in TRPM2. The reciprocal chimera, M8-M2P, showed currents after stimulation with high concentrations of menthol and icilin, but these currents were only slightly larger than in controls. The transfer of the NUDT9 domain to the C terminus of TRPM8 produced a channel sensitive to cold, menthol, or icilin but insensitive to ADP-ribose or hydrogen peroxide. We conclude that the gating processes in TRPM2 and TRPM8 differ in their requirements for specific structures within the pore. Moreover, the regulation by extracellular and intracellular Ca(2+) and the single-channel properties in TRPM2 are not determined by the S5-pore-S6 region.


Subject(s)
Calcium/metabolism , TRPM Cation Channels/metabolism , Adenosine Diphosphate Ribose/metabolism , Antipruritics/pharmacology , Cell Line , Cold Temperature , Humans , Hydrogen Peroxide/pharmacology , Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Menthol/pharmacology , Oxidants/pharmacology , Protein Structure, Tertiary , Pyrimidinones/pharmacology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , TRPM Cation Channels/genetics
16.
J Physiol ; 586(22): 5349-66, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18818244

ABSTRACT

The eight members of the calcium channel gamma subunit family are integral membrane proteins that regulate the expression and behaviour of voltage and ligand gated ion channels. While a subgroup consisting of gamma(2), gamma(3), gamma(4) and gamma(8) (the TARPs) modulate AMPA receptor localization and function, the gamma(1) and gamma(6) subunits conform to the original description of these proteins as regulators of voltage gated calcium channels. We have previously shown that the gamma(6) subunit is highly expressed in atrial myocytes and that it is capable of acting as a negative modulator of low voltage activated calcium current. In this study we extend our understanding of gamma(6) subunit modulation of low voltage activated calcium current. Using engineered chimeric constructs, we demonstrate that the first transmembrane domain (TM1) of gamma(6) is necessary for its inhibitory effect on Cav3.1 current. Mutational analysis is then used to identify a unique GxxxA motif within TM1 that is required for the function of the subunit strongly suggesting the involvement of helix-helix interactions in its effects. Results from co-immunoprecipitation experiments confirm a physical association of gamma(6) with the Cav3.1 channel in both HEK cells and atrial myocytes. Single channel analysis reveals that binding of gamma(6) reduces channel availability for activation. Taken together, the results of this study provide both a molecular and a mechanistic framework for understanding the unique ability of the gamma(6) calcium channel subunit to modulate low voltage activated (Cav3.1) calcium current density.


Subject(s)
Calcium Channels/chemistry , Calcium Channels/metabolism , Amino Acid Motifs , Animals , Calcium Channels/genetics , Calcium Channels, T-Type/chemistry , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , Cell Line , Electrophysiology , Humans , In Vitro Techniques , Kinetics , Models, Molecular , Molecular Sequence Data , Multiprotein Complexes , Myocytes, Cardiac/metabolism , Protein Subunits , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...