Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mult Scler J Exp Transl Clin ; 9(4): 20552173231211396, 2023.
Article in English | MEDLINE | ID: mdl-38021451

ABSTRACT

Background: Imaging investigation of cerebrospinal fluid (CSF) in multiple sclerosis (MS) is understudied. Development of noninvasive methods to detect pathological CSF changes would have a profound effect on MS diagnosis and would offer insight into MS pathophysiology and mechanisms of neurological impairment. Objective: We propose magnetization transfer (MT) MRI as a tool to detect macromolecular changes in spinal CSF. Methods: MT and quantitative MT (qMT) data were acquired in the cervical region in 27 people with relapsing-remitting multiple sclerosis (pwRRMS) and 38 age and sex-matched healthy controls (HCs). MT ratio (MTR), the B1, B0, and R1 corrected qMT-derived pool size ratio (PSR) were quantified in the spinal cord and CSF of each group. Results: Both CSF MTR and CSF qMT-derived PSR were significantly increased in pwRRMS compared to HC (p = 0.027 and p = 0.020, respectively). CSF PSR of pwRRMS was correlated to Expanded Disability Status Scale Scores (p = 0.045, R = 0.352). Conclusion: Our findings demonstrate increased CSF macromolecular content in pwRRMS and link CSF macromolecular content with clinical impairment. This highlights the potential role of CSF in processing products of demyelination.

2.
Neuroimage ; 284: 120460, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37979894

ABSTRACT

BACKGROUND: Susceptibility-weighted imaging (SWI) has been extensively studied in the brain and in diseases of the central nervous system such as multiple sclerosis (MS) providing unique opportunities to visualize cerebral vasculature and disease-related pathology, including the central vein sign (CVS) and paramagnetic rim lesions (PRLs). However, similar studies evaluating SWI in the spinal cord of patients with MS remain severely limited. PURPOSE: Based on our previous findings of enlarged spinal vessels in MS compared to healthy controls (HCs), we developed high-field SWI acquisition and processing methods for the cervical spinal cord with application in people with MS (pwMS) and HCs. Here, we demonstrate the vascular variability between the two cohorts and unique MS lesion features in the cervical cord. METHODS: In this retrospective, exploratory pilot study conducted between March 2021 and March 2022, we scanned 12 HCs and 9 pwMS using an optimized non-contrast 2D T2*-weighted gradient echo sequence at 7 tesla. The overall appearance of the white and gray matter as well as tissue vasculature were compared between the two cohorts and areas of MS pathology in the patient group were assessed using both the magnitude and processed SWI images. RESULTS: We show improved visibility of vessels and more pronounced gray and white matter contrast in the MS group compared to HCs, hypointensities surrounding the cord in the MS cohort, and identify signal changes indicative of the CVS and paramagnetic rims in 66 % of pwMS with cervical spinal lesions. CONCLUSION: In this first study of SWI at 7T in the human spinal cord, SWI holds promise in advancing our understanding of disease processes in the cervical cord in MS.


Subject(s)
Cervical Cord , Multiple Sclerosis , Humans , Cervical Cord/diagnostic imaging , Cervical Cord/pathology , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Retrospective Studies , Pilot Projects , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Magnetic Resonance Imaging/methods
3.
Neuroimage Clin ; 35: 103127, 2022.
Article in English | MEDLINE | ID: mdl-35917721

ABSTRACT

Focal lesions may affect functional connectivity (FC) of the ventral and dorsal networks in the cervical spinal cord of people with relapsing-remitting multiple sclerosis (RRMS). Resting-state FC can be measured using functional MRI (fMRI) at 3T. This study sought to determine whether alterations in FC may be related to the degree of damage in the normal-appearing tissue. Tissue integrity and FC in the cervical spinal cord were assessed with diffusion tensor imaging (DTI) and resting-state fMRI, respectively, in a group of 26 RRMS participants with high cervical lesion load, low disability, and minimally impaired sensorimotor function, and healthy controls. Lower fractional anisotropy (FA) and higher radial diffusivity (RD) were observed in the normal-appearing white matter in the RRMS group relative to controls. Average FC in ventral and dorsal networks was similar between groups. Significant associations were found between higher FC in the dorsal sensory network and several DTI markers of pathology in the normal-appearing tissue. In the normal-appearing grey matter, dorsal FC was positively correlated with axial diffusivity (AD) (r = 0.46, p = 0.020) and mean diffusivity (MD) (r = 0.43, p = 0.032). In the normal-appearing white matter, dorsal FC was negatively correlated with FA (r = -0.43, p = 0.028) and positively correlated with RD (r = 0.49, p = 0.012), AD (r = 0.42, p = 0.037) and MD (r = 0.53, p = 0.006). These results suggest that increased connectivity, while remaining within the normal range, may represent a compensatory mechanism in response to structural damage in support of preserved sensory function in RRMS.


Subject(s)
Cervical Cord , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Brain , Cervical Cord/pathology , Diffusion Tensor Imaging/methods , Humans , Multiple Sclerosis/pathology , Multiple Sclerosis, Relapsing-Remitting/pathology , Spinal Cord/pathology
4.
Neuroimage ; 201: 116026, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31326569

ABSTRACT

Multi-compartment tissue modeling using diffusion magnetic resonance imaging has proven valuable in the brain, offering novel indices sensitive to the tissue microstructural environment in vivo on clinical MRI scanners. However, application, characterization, and validation of these models in the spinal cord remain relatively under-studied. In this study, we apply a diffusion "signal" model (diffusion tensor imaging, DTI) and two commonly implemented "microstructural" models (neurite orientation dispersion and density imaging, NODDI; spherical mean technique, SMT) in the human cervical spinal cord of twenty-one healthy controls. We first provide normative values of DTI, SMT, and NODDI indices in a number of white matter ascending and descending pathways, as well as various gray matter regions. We then aim to validate the sensitivity and specificity of these diffusion-derived contrasts by relating these measures to indices of the tissue microenvironment provided by a histological template. We find that DTI indices are sensitive to a number of microstructural features, but lack specificity. The microstructural models also show sensitivity to a number of microstructure features; however, they do not capture the specific microstructural features explicitly modelled. Although often regarded as a simple extension of the brain in the central nervous system, it may be necessary to re-envision, or specifically adapt, diffusion microstructural models for application to the human spinal cord with clinically feasible acquisitions - specifically, adjusting, adapting, and re-validating the modeling as it relates to both theory (i.e. relevant biology, assumptions, and signal regimes) and parameter estimation (for example challenges of acquisition, artifacts, and processing).


Subject(s)
Cervical Cord/anatomy & histology , Diffusion Tensor Imaging , Models, Anatomic , Adult , Correlation of Data , Diffusion Tensor Imaging/standards , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...