Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 656: 475-481, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30522030

ABSTRACT

Identifying what determines fish mercury (Hg) bioaccumulation remains a key scientific challenge. While there has been substantial research on spatial variation in fish Hg bioaccumulation, the factors that influence temporal fluctuations in fish Hg have received less attention to date. In this study, we built upon a growing body of research investigating young-of-the-year (YOY) yellow perch Hg bioaccumulation and investigated annual fluctuations in YOY yellow perch Hg in six lakes in northeastern Minnesota over eight years. After accounting for spatial variation between the study lakes, we used model averaging to identify the lake physiochemical and climate factors that best explain temporal variation in fish biomass and fish Hg. Fish biomass of YOY yellow perch had a positive relationship with chlorophyll-α and total Kjeldahl nitrogen and a negative relationship with dissolved iron and dissolved oxygen. There was a positive relationship between annual variation in yellow perch Hg concentration and annual variation in lake total suspended solids, dissolved Fe and pH. Additionally, there was a negative relationship between fish Hg concentration and lake total Kjeldahl nitrogen and growing degree days. Together, our results suggest that annual variation in allochthonous inputs from the watershed, in-lake processes, and climate variables can explain temporal patterns in Hg bioaccumulation and growth biodilution is an important process controlling yellow perch Hg concentrations.


Subject(s)
Environmental Exposure , Mercury/pharmacology , Perches/metabolism , Water Pollutants, Chemical/pharmacology , Animals , Environmental Monitoring , Lakes , Minnesota
2.
J Environ Qual ; 46(3): 623-631, 2017 May.
Article in English | MEDLINE | ID: mdl-28724108

ABSTRACT

Wildland fire can alter mercury (Hg) cycling on land and in adjacent aquatic environments. In addition to enhancing local atmospheric Hg redeposition, fire can influence terrestrial movement of Hg and other elements into lakes via runoff from burned upland soil. However, the impact of fire on water quality and the accumulation of Hg in fish remain equivocal. We investigated the effects of fire-specifically, a low-severity prescribed fire and moderate-severity wildfire-on young-of-the-year yellow perch () and lake chemistry in a small remote watershed in the Boundary Waters Canoe Area Wilderness in northeastern Minnesota. We used a paired watershed approach: the fire-affected watershed was compared with an adjacent, unimpacted (reference) watershed. Prior to fire, upland organic horizons in the two study watersheds contained 1549 µg Hg m on average. Despite a 19% decrease in upland organic horizon Hg stocks due to the moderate severity wildfire fire, fish Hg accumulation and lake productivity were not affected by fire in subsequent years. Instead, climate and lake water levels were the strongest predictors of lake chemistry and fish responses in our study lakes over 9 yr. Our results suggest that low- to moderate-severity wildland fire does not alter lake productivity or Hg accumulation in young-of-the-year yellow perch in these small, shallow lakes in the northern deciduous and boreal forest region.


Subject(s)
Mercury/analysis , Perches , Water Pollutants, Chemical/analysis , Wildfires , Animals , Fires , Lakes , Minnesota
3.
Environ Sci Technol ; 43(6): 1776-82, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19368171

ABSTRACT

Particulate Hg (pHg) is a component of smoke from biomass burning and has the potential for local redeposition. Throughfall (precipitation collected beneath a conifer or deciduous canopy) and open precipitation samples were collected pre- and postfire in 2005 and 2006 using passive precipitation collectors across the Superior National Forest, located in northern Minnesota, USA. Samples were collected approximately every two weeks and analyzed for total Hg (THg) and methyl Hg (MeHg). THg concentrations increased significantly postfire in conifer throughfall (> 4x increase), open precipitation (2.5x), and when all canopy types were considered (2.9x). MeHg concentrations also increased after fire regardless of the covertype (conifer throughfall: 10x increase; open precipitation: 3.5x increase; deciduous throughfall: 1.7x increase; all canopy types analyzed together: 8x increase). Total Hg deposition increased significantly under conifer cover (3.8x). Methyl Hg deposition increased significantly after fire when all canopy types were analyzed together (4.6x) and in conifer throughfall (5.9x). Canopy type influenced the magnitude of postfire THg and MeHg increase and the duration of elevated MeHg levels. Particulate Hg present in forest fire smoke represents a short-term source of increased Hg in the atmosphere that is available for local redeposition during and following fire.


Subject(s)
Environmental Pollutants/chemistry , Fires , Mercury/chemistry , Trees , Environmental Monitoring , Minnesota , Rain , Smoke
SELECTION OF CITATIONS
SEARCH DETAIL
...