Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Mov Ecol ; 10(1): 58, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482483

ABSTRACT

BACKGROUND: To understand life-history strategies in migratory bird species, we should focus on migration behaviour and possible carry-over effects on both population and individual level. Tracking devices are useful tools to directly investigate migration behaviour. With increased use of tracking devices, questions arise towards animal welfare and possible negative effects of logger on birds. Several studies were conducted to address this question in birds that were tagged and tracked for one complete non-breeding season including migration but with mixed results. To detect individual-based decisions regarding migration strategy, we need to track the same individuals several times. So far, there are no studies investigating effects of repeatedly tagging on reproduction and life-history traits in individual migratory birds, especially in small birds. METHODS: We used long-term data of 85 tagged common swifts (Apus apus), a long-distance migratory bird, of a breeding colony in Germany to test whether carrying a geolocator or GPS logger once or repeatedly during non-breeding season affected return rate, apparent survival, and parameters determining reproductive success. Additionally, we checked for individual differences in arrival date and breeding parameters when the same individuals were tagged and when they were not tagged in different years. Further, we calculated the individual repeatability in arrival at the breeding colony and date of egg laying in repeatedly tagged swifts. RESULTS: Once and repeatedly tagged birds returned to the colony at a similar rate as non-logger birds and arrived earlier than non-logger birds. We found no effect of logger-type on return rate in logger birds. We detected no differences in apparent survival, time lag to clutch initiation, date of clutch initiation, clutch size, number of chicks and fledglings between logger and non-logger birds. We found neither an effect of loggers nor of logger-types on the arrival date and breeding parameter on individual-level. Arrival date was highly repeatable and date of clutch initiation was moderately repeatable within repeatedly tagged individuals.

2.
J Toxicol Environ Health A ; 85(21): 867-880, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-35881030

ABSTRACT

The aim of this study was to determine the effects of silver nanoparticles (AgNPs; speciation: NM-300 K) in the lab on the behavior of larvae in European Whitefish (Coregonus lavaretus), a relevant model species for temperate aquatic environments during alternating light and darkness phases. The behavioral parameters measured included activity, turning rate, and distance moved. C. lavaretus were exposed to AgNP at nominal concentrations of 0, 5, 15, 45, 135, or 405 µg/L (n = 33, each) and behavior was recorded using a custom-built tracking system equipped with light sources that reliably simulate light and darkness. The observed behavior was analyzed using generalized linear mixed models, which enabled reliable detection of AgNP-related movement patterns at 10-fold higher sensitivity compared to recently reported standard toxicological studies. Exposure to 45 µg/L AgNPs significantly resulted in hyperactive response patterns for both activity and turning rates after an illumination change from light to darkness suggesting that exposure to this compound triggered escape mechanisms and disorientation-like behaviors in C. lavaretus fish larvae. Even at 5 µg/L AgNPs some behavioral effects were detected, but further tests are required to assess their ecological relevance. Further, the behavior of fish larvae exposed to 135 µg/L AgNPs was comparable to the control for all test parameters, suggesting a triphasic dose response pattern. Data demonstrated the potential of combining generalized linear mixed models with behavioral investigations to detect adverse effects on aquatic species that might be overlooked using standard toxicological tests.


Subject(s)
Metal Nanoparticles , Salmonidae , Animals , Larva , Metal Nanoparticles/toxicity , Salmonidae/physiology , Silver/toxicity , Swimming
3.
Biol Lett ; 18(4): 20210675, 2022 04.
Article in English | MEDLINE | ID: mdl-35414223

ABSTRACT

Daily torpor is a means of saving energy by controlled lowering of the metabolic rate (MR) during resting, usually coupled with a decrease in body temperature. We studied nocturnal daily torpor under natural conditions in free-living common swifts Apus apus resting in their nests as a family using two non-invasive approaches. First, we monitored nest temperature (Tnest) in up to 50 occupied nests per breeding season in 2010-2015. Drops in Tnest were the first indication of torpor. Among 16 673 observations, we detected 423 events of substantial drops in Tnest of on average 8.6°C. Second, we measured MR of the families inside nest-boxes prepared for calorimetric measurements during cold periods in the breeding seasons of 2017 and 2018. We measured oxygen consumption and carbon dioxide production using a mobile indirect respirometer and calculated the percentage reduction in MR. During six torpor events observed, MR was gradually reduced by on average 56% from the reference value followed by a decrease in Tnest of on average 7.6°C. By contrast, MR only decreased by about 33% on nights without torpor. Our field data gave an indication of daily torpor, which is used as a strategy for energy saving in free-living common swifts.


Subject(s)
Torpor , Animals , Birds , Body Temperature , Cold Temperature , Energy Metabolism , Humans , Seasons , Temperature
4.
Sci Rep ; 10(1): 8021, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32415127

ABSTRACT

One major environmental problem of our time are emerging contaminants in the aquatic environment. While nanoparticles exhibit attractive features such as antimicrobial properties in the case of silver nanoparticles (AgNPs), earlier studies suggest that NPs are not completely filtered out at wastewater treatment plants and may therefore be continuously introduced into the aquatic environment. Although adverse effects of AgNPs on aquatic organisms have been extensively studied, there is still a lack of knowledge on how this chemical stressor interacts with natural cues on the maternal and subsequent generation of aquatic organisms. We tested whether AgNPs (NM-300K, 14.9 ± 2.4 nm, concentration range: 2.5 µg/L - 20 µg/L) affect the kairomone-induced adaptive anti-predator defence mechanism in maternal Daphnia and their offspring. While maternal Daphnia developed typical anti-predator defence mechanisms when exposed to kairomones and AgNPs, their offspring could not develop such adaptive defensive traits. The lack of this defence mechanism in offspring could have dramatic negative consequences (e.g. reduced Daphnia population) for the entire complex food web in the aquatic ecosystem. For a realistic risk assessment, it is extremely important to test combinations of chemical stressors because aquatic organisms are exposed to several natural and artificial chemical stressors at the same time.


Subject(s)
Daphnia/drug effects , Daphnia/physiology , Metal Nanoparticles/adverse effects , Predatory Behavior , Silver , Animals , Environmental Exposure/adverse effects , Metal Nanoparticles/chemistry , Pheromones , Silver/adverse effects , Silver/chemistry
5.
Aquat Toxicol ; 220: 105404, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31954982

ABSTRACT

Due to their widespread use, silver (Ag) and titanium dioxide (TiO2) nanoparticles (NPs) are commonly discharged into aquatic environments via wastewater treatment plants. The study was aimed to assess the effects of wastewater-borne AgNPs (NM-300 K; 15.5 ±â€¯2.4 nm; 25-125 µg L-1) and TiO2NPs (NM-105; 23.1 ±â€¯6.2 nm; 12.5-100 µg L-1), from a laboratory-scale wastewater treatment plant, on Daphnia magna, at individual and subcellular level. For effect comparison, animals were also exposed to ASTM-dispersed NPs at the same nominal concentrations. The behaviour of D. magna was evaluated through monitoring of swimming height and allocation time for preferred zones after 0 h and 96 h of exposure. Biochemical markers of neurotransmission, anaerobic metabolism, biotransformation, and oxidative stress were subsequently determined. No 96-h EC50 (immobilization ≤ 4 %) could be obtained with wastewater-borne NPs and ASTM-dispersed TiO2NPs, whereas the ASTM-dispersed AgNPs resulted in an immobilization 96-h EC50 of 113.8 µg L-1. However, both wastewater-borne and ASTM-dispersed TiO2NPs, at 12.5 µg L-1, caused immediate (0 h) alterations on the swimming height. Allocation time analyses showed that animals exposed to ASTM-dispersed AgNPs spent more time on the surface and bottom at 0 h, and in the middle and bottom at 96 h. This pattern was not observed with ASTM-dispersed TiO2NPs nor with wastewater-borne AgNPs and wastewater-borne TiO2NPs. At the biochemical level, the more pronounced effects were observed with wastewater-borne AgNPs (e.g. induction of lactate dehydrogenase and glutathione S-transferase activities, and inhibition of catalase activity). This integrative approach showed that: (i) the behavioural and biochemical response-patterns were distinct in D. magna exposed to environmentally relevant concentrations of wastewater-borne and ASTM-dispersed NPs; (ii) the most pronounced effects on allocation time were induced by ASTM-dispersed AgNPs; and (iii) at the subcellular level, wastewater-borne AgNPs were more toxic than wastewater-borne TiO2NPs. This study highlights the need for the assessment of the effects of wastewater-borne NPs under realistic exposure scenarios, since processes in wastewater treatment plants may influence their toxicity.


Subject(s)
Daphnia/drug effects , Metal Nanoparticles/toxicity , Silver/toxicity , Titanium/toxicity , Wastewater/chemistry , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Daphnia/metabolism , Oxidative Stress/drug effects , Swimming
6.
Curr Zool ; 65(3): 279-284, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31263486
7.
Curr Zool ; 65(3): 323-332, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31263491

ABSTRACT

Behavioral flexibility provides an individual with the ability to adapt its behavior in response to environmental changes. Studies on mammals, birds, and teleosts indicate greater behavioral flexibility in females. Conversely, males appear to exhibit greater behavioral persistence. We, therefore, investigated sex differences in behavioral flexibility in 2 closely related molly species (Poecilia latipinna, P. mexicana) and their more distant relative, the guppy P. reticulata by comparing male and female individuals in a serial, visual reversal learning task. Fish were first trained in color discrimination, which was quickly learned by all females (guppies and mollies) and all molly males alike. Despite continued training over more than 72 sessions, male guppies did not learn the general test procedure and were, therefore, excluded from further testing. Once the reward contingency was reversed serially, molly males of both species performed considerably better by inhibiting their previous response and reached the learning criterion significantly faster than their respective conspecific females. Moreover, Atlantic molly males clearly outperformed all other individuals (males and females) and some of them even reached the level of 1-trial learning. Thus, the apparently universal pattern of higher female behavioral flexibility seems to be inverted in the 2 examined molly species, although the evolutionary account of this pattern remains highly speculative. These findings were complemented by the observed lower neophobia of female sailfin mollies compared with their male conspecifics. This sex difference was not observed in Atlantic mollies that were observed to be significantly less distressed in a novel situation than their consexuals. Hypothetically, sex differences in behavioral flexibility can possibly be explained in terms of the different roles that males and females play in mating competition, mate choice, and reproduction or, more generally, in complex social interactions. Each of these characteristics clearly differed between the closely related mollies and the more distantly related guppies.

8.
J Fish Biol ; 94(5): 759-771, 2019 May.
Article in English | MEDLINE | ID: mdl-30854659

ABSTRACT

The social environment offers fish complex information about the quality, performance, personality and other cues of potential mates and competitors simultaneously. It is likely, therefore, that the environmental information regarding the context of mate choice is perceived and processed differently in species and sexes in respect to lateralisation. The present study comparatively assessed visual lateralisation behaviour in response to different social or sexual stimuli in three closely related poeciliid species (P. latipinna, P. mexicana, P. formosa) in comparison to a more distantly related species (P. reticulata). Individuals were presented with four different social or sexual stimuli that were tested against a control stimulus; (a) a conspecific male, (b) a conspecific female, (c) a heterosexual conspecific pair, (d) three conspecific females (shoal). In order to approach a target stimulus, focal fish had to perform detours to the right or left of a vertically straight-shaped barrier. The three closely related poeciliid species, P. latipinna, P. mexicana, P. formosa, appeared to have a general tendency to turn right (i.e., left-eye preference), whereas the more distantly related P. reticulata males and females showed an overall bias to the left (i.e., right-eye preference) in response to various social-sexual incitements. Moreover, body size seemed to significantly influence especially the males' detour behaviour, with smaller males acting in opposition to their larger conspecifics in response to certain social stimuli. In this case, smaller and larger Poecilia spp. males responded in the same way as smaller and larger males of the other three poeciliid species. Therefore, results possibly point to differences in the degree of general social behaviour between closely and more distantly related species and mating motivation amongst larger and smaller individuals when placed in a novel social environment. Hence, present results possibly suggest a sex-specific functional lateralisation for the analysis of visual information and seem to support the closer ancestral relationships between the Poecilia spp. tested in this study and the more distantly related guppies in terms of their left-right lateralisation. Generally, present results suggest that functional asymmetries in behaviour could be widespread among vertebrates, thus supporting the hypothesis of an early evolution of lateralisation in brain and behaviour.


Subject(s)
Poecilia/physiology , Visual Perception , Animals , Body Size , Brain , Female , Male , Motivation , Personality , Social Behavior , Social Environment , Taiwan
9.
J Vis Exp ; (141)2018 11 08.
Article in English | MEDLINE | ID: mdl-30474637

ABSTRACT

Over the last decade, employing computer animations for animal behavior research has increased due to its ability to non-invasively manipulate the appearance and behavior of visual stimuli, compared to manipulating live animals. Here, we present the FishSim Animation Toolchain, a software framework developed to provide researchers with an easy-to-use method for implementing 3D computer animations in behavioral experiments with fish. The toolchain offers templates to create virtual 3D stimuli of five different fish species. Stimuli are customizable in both appearance and size, based on photographs taken of live fish. Multiple stimuli can be animated by recording swimming paths in a virtual environment using a video game controller. To increase standardization of the simulated behavior, the prerecorded swimming path may be replayed with different stimuli. Multiple animations can later be organized into playlists and presented on monitors during experiments with live fish. In a case study with sailfin mollies (Poecilia latipinna), we provide a protocol on how to conduct a mate-choice copying experiment with FishSim. We utilized this method to create and animate virtual males and virtual model females, and then presented these to live focal females in a binary choice experiment. Our results demonstrate that computer animation may be used to simulate virtual fish in a mate-choice copying experiment to investigate the role of female gravid spots as an indication of quality for a model female in mate-choice copying. Applying this method is not limited to mate-choice copying experiments but can be used in various experimental designs. Still, its usability depends on the visual capabilities of the study species and first needs validation. Overall, computer animations offer a high degree of control and standardization in experiments and bear the potential to 'reduce' and 'replace' live stimulus animals as well as to 'refine' experimental procedures.


Subject(s)
Choice Behavior/physiology , Poecilia/growth & development , Reproduction/physiology , Sexual Behavior, Animal/physiology , Animals , Fishes
10.
PLoS One ; 13(11): e0207264, 2018.
Article in English | MEDLINE | ID: mdl-30485324

ABSTRACT

Zebrafish larvae (Danio rerio) are among the most used model species to test biological effects of different substances in biomedical research, neuroscience and ecotoxicology. Most tests are based on changes in swimming activity of zebrafish larvae by using commercially available high-throughput screening systems. These systems record and analyse behaviour patterns using visible (VIS) and near-infrared (NIR) light sources, to simulate day (VIS) and night (NIR) phases, which allow continuous recording of the behaviour using a NIR sensitive camera. So far, however, the sensitivity of zebrafish larvae to NIR has never been tested experimentally, although being a critical piece of information for interpreting their behaviour under experimental conditions. Here, we investigated the swimming activity of 96 hpf (hours post fertilization) and 120 hpf zebrafish larvae under light sources of NIR at 860 nm and at 960 nm wavelength and under VIS light. A thermal source was simultaneously presented opposite to one of the light sources as control. We found that zebrafish larvae of both larval stages showed a clear negative phototactic response towards 860 nm NIR light and to VIS light, but not to 960 nm NIR light. Our results demonstrated that zebrafish larvae are able to perceive NIR at 860 nm, which is almost identical to the most commonly used light source in commercial screening systems (NIR at 850 nm) to create a dark environment. These tests, however, are not performed in the dark from the zebrafish´s point of view. We recommend testing sensitivity of the used test organism before assuming no interaction with the applied light source of commonly used biosensor test systems. Previous studies on biological effects of substances to zebrafish larvae should be interpreted with caution.


Subject(s)
Phototaxis/physiology , Zebrafish/physiology , Animals , Ecotoxicology , Infrared Rays , Larva/physiology , Light , Motor Activity , Swimming
11.
Biology (Basel) ; 7(3)2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30011804

ABSTRACT

Animals often use public information for mate-choice decisions by observing conspecifics as they choose their mates and then copying this witnessed decision. When the copier, however, is detected by the choosing individual, the latter often alters its behavior and spends more time with the previously non-preferred mate. This behavioral change is called the audience effect. The deception hypothesis states that the choosing individual changes its behavior to distract the audience from the preferred mate. The deception hypothesis, however, only applies if the audience indeed copies the pretended mate choice of the observed individual. So far, this necessary prerequisite has never been tested. We investigated in Atlantic molly males and females whether, first, focal fish show an audience effect, i.e., alter their mate choices in the presence of an audience fish, and second, whether audience fish copy the mate choice of the focal fish they had just witnessed. We found evidence that male and female Atlantic mollies copy the pretended mate choice of same-sex focal fish. Therefore, a necessary requirement of the deception hypothesis is fulfilled. Our results show that public information use in the context of mate choice can be costly.

12.
J Exp Biol ; 221(Pt 13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29712747

ABSTRACT

The louse fly Crataerina pallida is an obligate blood-sucking ectoparasite of the common swift Apus apus As a result of reduction of the wings, C. pallida is unable to fly; thus, an effective and reliable attachment to their host's plumage is of utmost importance. The attachment system of C. pallida shows several modifications in comparison to that of other calyptrate flies, notably the large tridentate claws and the dichotomously shaped setae located on the pulvilli. Based on data from morphological analysis, confocal laser scanning microscopy, cryo-scanning electron microscopy and attachment force experiments performed on native (feathers) as well as artificial substrates (glass, epoxy resin and silicone rubber), we showed that the entire attachment system is highly adapted to the fly's lifestyle as an ectoparasite. The claws in particular are the main contributor to strong attachment to the host. Resulting attachment forces on feathers make it impossible to detach C. pallida without damage to the feathers or to the legs of the louse fly itself. Well-developed pulvilli are responsible for the attachment to smooth surfaces. Both dichotomously shaped setae and high setal density explain high attachment forces observed on smooth substrates. For the first time, we demonstrate a material gradient within the setae, with soft, resilin-dominated apical tips and stiff, more sclerotized bases in Diptera. The empodium seems not to be directly involved in the attachment process, but it might operate as a cleaning device and may be essential to maintain the functionality of the entire attachment system.


Subject(s)
Birds/parasitology , Diptera/anatomy & histology , Feathers/parasitology , Host-Parasite Interactions , Animals , Diptera/physiology , Female , Male
13.
Curr Zool ; 63(1): 1-4, 2017 Feb.
Article in English | MEDLINE | ID: mdl-29491957
14.
Curr Zool ; 63(1): 5-19, 2017 Feb.
Article in English | MEDLINE | ID: mdl-29491958

ABSTRACT

Rapid technical advances in the field of computer animation (CA) and virtual reality (VR) have opened new avenues in animal behavior research. Animated stimuli are powerful tools as they offer standardization, repeatability, and complete control over the stimulus presented, thereby "reducing" and "replacing" the animals used, and "refining" the experimental design in line with the 3Rs. However, appropriate use of these technologies raises conceptual and technical questions. In this review, we offer guidelines for common technical and conceptual considerations related to the use of animated stimuli in animal behavior research. Following the steps required to create an animated stimulus, we discuss (I) the creation, (II) the presentation, and (III) the validation of CAs and VRs. Although our review is geared toward computer-graphically designed stimuli, considerations on presentation and validation also apply to video playbacks. CA and VR allow both new behavioral questions to be addressed and existing questions to be addressed in new ways, thus we expect a rich future for these methods in both ultimate and proximate studies of animal behavior.

15.
Curr Zool ; 63(1): 55-64, 2017 Feb.
Article in English | MEDLINE | ID: mdl-29491963

ABSTRACT

Animal behavior researchers often face problems regarding standardization and reproducibility of their experiments. This has led to the partial substitution of live animals with artificial virtual stimuli. In addition to standardization and reproducibility, virtual stimuli open new options for researchers since they are easily changeable in morphology and appearance, and their behavior can be defined. In this article, a novel toolchain to conduct behavior experiments with fish is presented by a case study in sailfin mollies Poecilia latipinna. As the toolchain holds many different and novel features, it offers new possibilities for studies in behavioral animal research and promotes the standardization of experiments. The presented method includes options to design, animate, and present virtual stimuli to live fish. The designing tool offers an easy and user-friendly way to define size, coloration, and morphology of stimuli and moreover it is able to configure virtual stimuli randomly without any user influence. Furthermore, the toolchain brings a novel method to animate stimuli in a semiautomatic way with the help of a game controller. These created swimming paths can be applied to different stimuli in real time. A presentation tool combines models and swimming paths regarding formerly defined playlists, and presents the stimuli onto 2 screens. Experiments with live sailfin mollies validated the usage of the created virtual 3D fish models in mate-choice experiments.

16.
Curr Zool ; 63(1): 65-74, 2017 Feb.
Article in English | MEDLINE | ID: mdl-29491964

ABSTRACT

The use of computer animation in behavioral research is a state-of-the-art method for designing and presenting animated animals to live test animals. The major advantages of computer animations are: (1) the creation of animated animal stimuli with high variability of morphology and even behavior; (2) animated stimuli provide highly standardized, controlled and repeatable testing procedures; and (3) they allow a reduction in the number of live test animals regarding the 3Rs principle. But the use of animated animals should be attended by a thorough validation for each test species to verify that behavior measured with live animals toward virtual animals can also be expected with natural stimuli. Here we present results on the validation of a custom-made simulation for animated 3D sailfin mollies Poecilia latipinna and show that responses of live test females were as strong to an animated fish as to a video or a live male fish. Movement of an animated stimulus was important but female response was stronger toward a swimming 3D fish stimulus than to a "swimming" box. Moreover, male test fish were able to discriminate between animated male and female stimuli; hence, rendering the animated 3D fish a useful tool in mate-choice experiments with sailfin mollies.

17.
PLoS One ; 11(2): e0147130, 2016.
Article in English | MEDLINE | ID: mdl-26839957

ABSTRACT

Animals observing conspecifics during mate choice can gain additional information about potential mates. However, the presence of an observer, if detected by the observed individuals, can influence the nature of the behavior of the observed individuals, called audience effect. In zebra finches (Taeniopygia guttata castanotis), domesticated males show an audience effect during mate choice. However, whether male and female descendants of the wild form show an audience effect during mate choice is unknown. Therefore, we conducted an experiment where male and female focal birds could choose between two distinctive phenotypes of the opposite sex, an artificially adorned stimulus bird with a red feather on the forehead and an unadorned stimulus bird, two times consecutively, once without an audience and once with an audience bird (same sex as test bird). Males showed an audience effect when an audience male was present and spent more time with adorned and less time with unadorned females compared to when there was no audience present. The change in time spent with the respective stimulus females was positively correlated with the time that the audience male spent in front of its cage close to the focal male. Females showed no change in mate choice when an audience female was present, but their motivation to associate with both stimulus males decreased. In a control for mate-choice consistency there was no audience in either test. Here, both focal females and focal males chose consistently without a change in choosing motivation. Our results showed that there is an audience effect on mate choice in zebra finches and that the response to a same-sex audience was sex-specific.


Subject(s)
Choice Behavior/physiology , Finches/physiology , Mating Preference, Animal/physiology , Animals , Courtship , Female , Male , Observation
18.
PLoS One ; 10(11): e0143046, 2015.
Article in English | MEDLINE | ID: mdl-26605549

ABSTRACT

Biodiversity is rapidly declining globally. One strategy to help to conserve species is to breed species in captivity and release them into suitable habitats. The way that reintroduced animals explore new habitats and/or disperse from the release site is rarely studied in detail and represents key information for the success of reintroduction projects. The European bison (Bison bonasus L. 1758) was the largest surviving herbivore of the post-glacial megafauna in Europe before it became extinct in the wild, surviving only in captivity since 1919. We investigated the exploration behavior of a herd of European bison reintroduced into the Rothaargebirge, a commercial forest in low range mountain intensively used and densely populated by humans, in the first six months after release. We focused on three questions: (1) how did the European bison move and utilize the habitat on a daily basis, (2) how did the animals explore the new environment, and (3) did their habitat preferences change over time. The European bison dispersed away from their previous enclosure at an average rate of 539 m/month, with their areas of daily use ranging from 70 to 173 ha, their movement ranging from 3.6 km to 5.2 km per day, and their day-to-day use of areas ranged between 389 and 900 m. We could identify three major exploration bouts, when the animals entered and explored areas previously unknown to them. During the birthing phase, the European bison reduced daily walking distances, and the adult bull segregated from the herd for 58 days. Around rut, roaming behavior of the herd increased slightly. The animals preferred spruce forest, wind thrown areas and grassland, all of which are food abundant habitat types, and they avoided beech forest. Habitat preference differed slightly between phases of the study period, probably due to phenological cycles. After six months, the complete summer home range was 42.5 km2. Our study shows that a small free-ranging herd of European bison can live in an area intensively used by humans and describes in detail the initial roaming behavior and habitat utilization of the animals.


Subject(s)
Behavior, Animal , Bison , Animals , Biodiversity , Cattle , Ecosystem , Europe , Exploratory Behavior
19.
Front Zool ; 12: 26, 2015.
Article in English | MEDLINE | ID: mdl-26435729

ABSTRACT

BACKGROUND: Mate-choice copying is a form of social learning in which an individual gains information about potential mates by observing conspecifics. However, it is still unknown what kind of information drives the decision of an individual to copy the mate choice of others. Among zebra finches (Taeniopygia guttata castanotis), only females (not males) copy the mate choice of others. We tested female zebra finches in a binary choice test where they, first, could choose between two males of different phenotypes: one unadorned male and one male artificially adorned with a red feather on the forehead. After this mate-choice test, females could observe a single unadorned male and a pair of zebra finches, i.e. a wild-type female and her adorned mate. Pair interactions were either restricted to acoustic and visual communication (clear glass screen between pair mates) or acoustic communication alone (opaque screen between pair mates). After the observation period, females could again choose between new males of the two phenotypes in a second mate-choice test. RESULTS: In experiments with a clear glass screen, time spent with the respective males changed between the two mate-choice tests, and females preferred adorned over unadorned males during the second mate-choice test. In experiments with an opaque screen, time spent with the respective males did not change between the two mate-choice tests, although females lost an initial preference for unadorned males. CONCLUSIONS: Our results demonstrate that the quality of the received public information (visual and acoustic interaction of the observed pair) influences mate-choice copying in female zebra finches.

20.
Curr Zool ; 61(6): 1073-1081, 2015 Dec.
Article in English | MEDLINE | ID: mdl-32256543

ABSTRACT

Mate-choice copying is a fascinating and widespread mate-choice strategy. Individuals gather public information about potential mates by observing others during sexual interactions and choose or reject the same individual as a mate as the observed individual did before. The influence of copying behavior on an individual's mate choice can be so strong that socially acquired information can override genetically based preferences for certain phenotypes. Thus, mate-choice copying enforces dynamic processes in sexual selection. Here, we review the current state of research on mate-choice copying and focus on sex-specific aspects. We present evidence that mate-choice copying can support the evolution of novel sexual ornaments, and we discuss potential costs of mate-choice copying when public information is not reliable. Moreover, we discuss the conflict faced by males that copy since mate-choice copying increases sperm competition. In conclusion we suggest interesting topics for future research in mate-choice copying.

SELECTION OF CITATIONS
SEARCH DETAIL
...