Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant Pathol ; 16(6): 616-22, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25348251

ABSTRACT

Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.


Subject(s)
Alternaria/pathogenicity , Arabidopsis/immunology , Folic Acid/metabolism , Salicylic Acid/metabolism , Arabidopsis/microbiology
2.
J Exp Bot ; 65(20): 5919-31, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25114016

ABSTRACT

Systemic acquired resistance (SAR) is a form of inducible disease resistance that depends on salicylic acid and its upstream regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Although local Arabidopsis thaliana defence responses activated by the Pseudomonas syringae effector protein AvrRpm1 are intact in eds1 mutant plants, SAR signal generation is abolished. Here, the SAR-specific phenotype of the eds1 mutant is utilized to identify metabolites that contribute to SAR. To this end, SAR bioassay-assisted fractionation of extracts from the wild type compared with eds1 mutant plants that conditionally express AvrRpm1 was performed. Using high-performance liquid chromatography followed by mass spectrometry, systemic immunity was associated with the accumulation of 60 metabolites, including the putative SAR signal azelaic acid (AzA) and its precursors 9-hydroperoxy octadecadienoic acid (9-HPOD) and 9-oxo nonanoic acid (ONA). Exogenous ONA induced SAR in systemic untreated leaves when applied at a 4-fold lower concentration than AzA. The data suggest that in planta oxidation of ONA to AzA might be partially responsible for this response and provide further evidence that AzA mobilizes Arabidopsis immunity in a concentration-dependent manner. The AzA fragmentation product pimelic acid did not induce SAR. The results link the C9 lipid peroxidation products ONA and AzA with systemic rather than local resistance and suggest that EDS1 directly or indirectly promotes the accumulation of ONA, AzA, or one or more of their common precursors possibly by activating one or more pathways that either result in the release of these compounds from galactolipids or promote lipid peroxidation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/immunology , DNA-Binding Proteins/genetics , Dicarboxylic Acids/metabolism , Disease Resistance , Fatty Acids/metabolism , Plant Diseases/immunology , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Linoleic Acids/metabolism , Lipid Peroxides/metabolism , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Pseudomonas syringae/physiology , Salicylic Acid/metabolism
3.
Toxicol In Vitro ; 28(6): 1089-96, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24837627

ABSTRACT

The influence of cell numbers on peroxide-(tertiary butylhydroperoxide (tBHP) or hydrogen peroxide-(HP)) or zinc-(zinc chloride) induced oxidative stress was assessed in alveolar epithelial-like cell lines in this work. Differences in cell numbers change the cellular glutathione and glutathione reductase activity as well as the amount of exported glutathione and therefore might influence susceptibility against oxidative stress. Toxicity due to zinc decreased, toxicity due to HP increased, while tBHP-mediated toxicity was unchanged in our experiments when cells were exposed in suspension as compared to monolayers. Toxicity of HP correlated to the glutathione content in monolayers and in cell suspensions, while zinc- or tBHP-mediated toxicity did not correlate towards glutathione. Decreasing cellular glutathione and the activity of some antioxidative enzymes by glucocorticoid pretreatment had no effect on toxicity of zinc or tBHP in L2 cells in suspensions, while toxicity in monolayers was increased. Glucocorticoid pretreatment seems to increase toxicity of HP in A549 monolayers according to the lowered protein content, while toxicity might be changed by a different way when cells are incubated as cell suspensions. No explanation as a cell culture artificial effect was observed, therefore we assume the increased toxicity after glucocorticoid pretreatment occurs in vivo as well.


Subject(s)
Chlorides/toxicity , Dexamethasone/pharmacology , Glucocorticoids/pharmacology , Hydrogen Peroxide/toxicity , Oxidative Stress/drug effects , Zinc Compounds/toxicity , tert-Butylhydroperoxide/toxicity , Artifacts , Cell Count , Cell Culture Techniques , Cell Line , Epithelial Cells , Glutathione/metabolism , Glutathione Disulfide/metabolism , Humans , Methionine/metabolism , Pulmonary Alveoli/cytology
4.
Plant Physiol ; 165(2): 791-809, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24755512

ABSTRACT

Systemic acquired resistance (SAR) is an inducible immune response that depends on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). Here, we show that Arabidopsis (Arabidopsis thaliana) EDS1 is required for both SAR signal generation in primary infected leaves and SAR signal perception in systemic uninfected tissues. In contrast to SAR signal generation, local resistance remains intact in eds1 mutant plants in response to Pseudomonas syringae delivering the effector protein AvrRpm1. We utilized the SAR-specific phenotype of the eds1 mutant to identify new SAR regulatory proteins in plants conditionally expressing AvrRpm1. Comparative proteomic analysis of apoplast-enriched extracts from AvrRpm1-expressing wild-type and eds1 mutant plants led to the identification of 12 APOPLASTIC, EDS1-DEPENDENT (AED) proteins. The genes encoding AED1, a predicted aspartyl protease, and another AED, LEGUME LECTIN-LIKE PROTEIN1 (LLP1), were induced locally and systemically during SAR signaling and locally by salicylic acid (SA) or its functional analog, benzo 1,2,3-thiadiazole-7-carbothioic acid S-methyl ester. Because conditional overaccumulation of AED1-hemagglutinin inhibited SA-induced resistance and SAR but not local resistance, the data suggest that AED1 is part of a homeostatic feedback mechanism regulating systemic immunity. In llp1 mutant plants, SAR was compromised, whereas the local resistance that is normally associated with EDS1 and SA as well as responses to exogenous SA appeared largely unaffected. Together, these data indicate that LLP1 promotes systemic rather than local immunity, possibly in parallel with SA. Our analysis reveals new positive and negative components of SAR and reinforces the notion that SAR represents a distinct phase of plant immunity beyond local resistance.

5.
Biochem Biophys Res Commun ; 404(4): 1016-22, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21187070

ABSTRACT

Posttranslational histone modifications play an important role in modulating gene expression and chromatin structure. Here we report the identification of histone H3K79 dimethylation in the simple eukaryote Dictyostelium discoideum. We have deleted the D. discoideum Dot1/KMT4 homologue and demonstrate that it is the sole enzyme responsible for histone H3K79me2. Cells lacking Dot1 are reduced in growth and delayed in development, but do not show apparent changes in cell cycle regulation. Furthermore, our results indicate that Dot1 contributes to UV damage resistance and DNA repair in D. discoideum. In summary, the data support the view that the machinery controlling the setting of histone marks is evolutionary highly conserved and provide evidence that D. discoideum is a suitable model system to analyze these modifications and their functions during development and differentiation.


Subject(s)
DNA Damage , DNA Repair , Dictyostelium/growth & development , Histone-Lysine N-Methyltransferase/metabolism , Amino Acid Sequence , Dictyostelium/enzymology , Dictyostelium/genetics , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Methylation , Molecular Sequence Data
6.
Plant Biotechnol J ; 8(1): 47-64, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19954492

ABSTRACT

Engineering of plant protection in cereals requires well characterized tissue-specific and wounding/pathogen-inducible promoters for targeted expression of pathogen responsive and resistance genes. We describe the isolation of seven wheat and rice defensin genes expressed in early developing grain and during grain germination, two developmental stages that are particularly vulnerable to pathogens and insects. Comparison of three-dimensional (3D) models of these rice and wheat PRPI defensins indicated variations in spatial architectures that could reflect their functional diversities. Wheat and rice were stably transformed with promoter-GUS fusion constructs and the spatial and temporal activities of four promoters were studied using whole-mount and histological assays. PRPI promoters were active before and at anthesis in both transgenic wheat and rice with activity mainly in the ovary. In rice, GUS activity was also observed in vascular tissue of the lemma, palea and anthers. After fertilization, GUS was strongly expressed in the outer cell layers of the pericarp and in the main vascular bundle of the grain. During, and a short time after, seed germination, wheat promoters were active in transgenic rice embryos, roots and/or coleoptiles. All wheat and rice promoters were strongly induced by wounding in leaf, stem and grain of transgenic rice plants. These results suggest that PRPI promoters will be useful for specific targeting and accumulation of proteins conferring resistance to pathogens in vulnerable tissues of developing and germinating grain.


Subject(s)
Defensins/genetics , Oryza/genetics , Plant Proteins/genetics , Promoter Regions, Genetic , Triticum/genetics , Amino Acid Sequence , Cloning, Molecular , Gene Expression Regulation, Plant , Genes, Plant , Immunity, Innate , Models, Molecular , Molecular Sequence Data , Ovule/genetics , Plant Diseases/genetics , Plants, Genetically Modified/genetics , Protein Structure, Tertiary , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...