Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 630(8018): 891-898, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38926617

ABSTRACT

The El Niño-Southern Oscillation (ENSO) provides most of the global seasonal climate forecast skill1-3, yet, quantifying the sources of skilful predictions is a long-standing challenge4-7. Different sources of predictability affect ENSO evolution, leading to distinct global effects. Artificial intelligence forecasts offer promising advancements but linking their skill to specific physical processes is not yet possible8-10, limiting our understanding of the dynamics underpinning the advancements. Here we show that an extended nonlinear recharge oscillator (XRO) model shows skilful ENSO forecasts at lead times up to 16-18 months, better than global climate models and comparable to the most skilful artificial intelligence forecasts. The XRO parsimoniously incorporates the core ENSO dynamics and ENSO's seasonally modulated interactions with other modes of variability in the global oceans. The intrinsic enhancement of ENSO's long-range forecast skill is traceable to the initial conditions of other climate modes by means of their memory and interactions with ENSO and is quantifiable in terms of these modes' contributions to ENSO amplitude. Reforecasts using the XRO trained on climate model output show that reduced biases in both model ENSO dynamics and in climate mode interactions can lead to more skilful ENSO forecasts. The XRO framework's holistic treatment of ENSO's global multi-timescale interactions highlights promising targets for improving ENSO simulations and forecasts.

2.
Nat Commun ; 13(1): 1915, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35395824

ABSTRACT

Future changes in the seasonal evolution of the El Niño-Southern Oscillation (ENSO) during its onset and decay phases have received little attention by the research community. This work investigates the projected changes in the spatio-temporal evolution of El Niño events in the 21st Century (21 C), using a multi-model ensemble of coupled general circulation models subjected to anthropogenic forcing. Here we show that El Niño is projected to (1) grow at a faster rate, (2) persist longer over the eastern and far eastern Pacific, and (3) have stronger and distinct remote impacts via teleconnections. These changes are attributable to significant changes in the tropical Pacific mean state, dominant ENSO feedback processes, and an increase in stochastic westerly wind burst forcing in the western equatorial Pacific, and may lead to more significant and persistent global impacts of El Niño in the future.

3.
Nat Commun ; 13(1): 747, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136047

ABSTRACT

The potential for explosive volcanism to affect the El Niño-Southern Oscillation (ENSO) has been debated since the 1980s. Several observational studies, based largely on tree-ring proxies, have since found support for a positive ENSO phase in the year following large eruptions. In contrast, recent coral data from the heart of the tropical Pacific suggest no uniform ENSO response to explosive volcanism over the last millennium. Here we leverage paleoclimate data assimilation to integrate both tree-ring and coral proxies into a reconstruction of ENSO state, and re-appraise this relationship. We find only a weak statistical association between volcanism and ENSO, and identify the selection of volcanic events as a key variable to the conclusion. We discuss the difficulties of conclusively establishing a volcanic influence on ENSO by empirical means, given the myriad factors affecting the response, including the spatiotemporal details of the forcing and ENSO phase preconditioning.

4.
Science ; 374(6563): eaay9165, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34591645

ABSTRACT

Climate variability in the tropical Pacific affects global climate on a wide range of time scales. On interannual time scales, the tropical Pacific is home to the El Niño­Southern Oscillation (ENSO). Decadal variations and changes in the tropical Pacific, referred to here collectively as tropical Pacific decadal variability (TPDV), also profoundly affect the climate system. Here, we use TPDV to refer to any form of decadal climate variability or change that occurs in the atmosphere, the ocean, and over land within the tropical Pacific. "Decadal," which we use in a broad sense to encompass multiyear through multidecadal time scales, includes variability about the mean state on decadal time scales, externally forced mean-state changes that unfold on decadal time scales, and decadal variations in the behavior of higher-frequency modes like ENSO.

6.
Nature ; 559(7715): 535-545, 2018 07.
Article in English | MEDLINE | ID: mdl-30046070

ABSTRACT

El Niño events are characterized by surface warming of the tropical Pacific Ocean and weakening of equatorial trade winds that occur every few years. Such conditions are accompanied by changes in atmospheric and oceanic circulation, affecting global climate, marine and terrestrial ecosystems, fisheries and human activities. The alternation of warm El Niño and cold La Niña conditions, referred to as the El Niño-Southern Oscillation (ENSO), represents the strongest year-to-year fluctuation of the global climate system. Here we provide a synopsis of our current understanding of the spatio-temporal complexity of this important climate mode and its influence on the Earth system.


Subject(s)
El Nino-Southern Oscillation , Climate Change , Tropical Climate , Water Movements
7.
Nature ; 441(7089): 73-6, 2006 May 04.
Article in English | MEDLINE | ID: mdl-16672967

ABSTRACT

Since the mid-nineteenth century the Earth's surface has warmed, and models indicate that human activities have caused part of the warming by altering the radiative balance of the atmosphere. Simple theories suggest that global warming will reduce the strength of the mean tropical atmospheric circulation. An important aspect of this tropical circulation is a large-scale zonal (east-west) overturning of air across the equatorial Pacific Ocean--driven by convection to the west and subsidence to the east--known as the Walker circulation. Here we explore changes in tropical Pacific circulation since the mid-nineteenth century using observations and a suite of global climate model experiments. Observed Indo-Pacific sea level pressure reveals a weakening of the Walker circulation. The size of this trend is consistent with theoretical predictions, is accurately reproduced by climate model simulations and, within the climate models, is largely due to anthropogenic forcing. The climate model indicates that the weakened surface winds have altered the thermal structure and circulation of the tropical Pacific Ocean. These results support model projections of further weakening of tropical atmospheric circulation during the twenty-first century.


Subject(s)
Air Movements , Atmosphere/analysis , Greenhouse Effect , Human Activities , Tropical Climate , History, 19th Century , History, 20th Century , History, 21st Century , Models, Theoretical , Pacific Ocean , Seawater , Time Factors , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...