Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 19(27): 5076-5091, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37367202

ABSTRACT

The kinetics of phase transition processes often governs the resulting material microstructure. Using optical microscopy, we here investigate the formation and stabilization of a porous crystalline microstructure forming in low-salt suspensions of charged colloidal spheres containing aggregates comprising some 5-10 of these colloids. We observe the transformation of an initially crystalline colloidal solid with homogeneously incorporated aggregates to individual, compositionally refined crystallites of perforated morphology coexisting with an aggregate-enriched fluid phase filling the holes and separating individual crystallites. A preliminary kinetic characterization suggests that the involved processes follow power laws. We show that this route to porous materials is neither restricted to nominally single component systems nor to a particular microstructure to start from. However, it necessitates an early rapid solidification stage during which the aggregates become trapped in the bulk of the host-crystals. The thermodynamic stability of the reconstructed crystalline scaffold against melting under increased salinity was found comparable to that of pure phase crystallites grown very slowly from a melt. Future implications of this novel route to porous colloidal crystals are discussed.

2.
J Chem Phys ; 146(20): 204904, 2017 May 28.
Article in English | MEDLINE | ID: mdl-28571383

ABSTRACT

Frequency domain super-heterodyne laser light scattering is utilized in a low angle integral measurement configuration to determine flow and diffusion in charged sphere suspensions showing moderate to strong multiple scattering. We introduce an empirical correction to subtract the multiple scattering background and isolate the singly scattered light. We demonstrate the excellent feasibility of this simple approach for turbid suspensions of transmittance T ≥ 0.4. We study the particle concentration dependence of the electro-kinetic mobility in low salt aqueous suspension over an extended concentration regime and observe a maximum at intermediate concentrations. We further use our scheme for measurements of the self-diffusion coefficients in the fluid samples in the absence or presence of shear, as well as in polycrystalline samples during crystallization and coarsening. We discuss the scope and limits of our approach as well as possible future applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...