Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 10(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924896

ABSTRACT

Mutations in the actin motor protein myosinVb (myo5b) cause aberrant apical cargo transport and the congenital enteropathy microvillus inclusion disease (MVID). Recently, missense mutations in myo5b were also associated with progressive familial intrahepatic cholestasis (MYO5B-PFIC). Here, we thoroughly characterized the ultrastructural and immuno-cytochemical phenotype of hepatocytes and duodenal enterocytes from a unique case of an adult MYO5B-PFIC patient who showed constant hepatopathy but only periodic enteric symptoms. Selected data from two other patients supported the findings. Advanced methods such as cryo-fixation, freeze-substitution, immuno-gold labeling, electron tomography and immuno-fluorescence microscopy complemented the standard procedures. Liver biopsies showed mislocalization of Rab11 and bile canalicular membrane proteins. Rab11-positive vesicles clustered around bile canaliculi and resembled subapical clusters of aberrant recycling endosomes in enterocytes from MVID patients. The adult patient studied in detail showed a severe, MVID-specific enterocyte phenotype, despite only a mild clinical intestinal presentation. This included mislocalization of numerous proteins essential for apical cargo transport and morphological alterations. We characterized the heterogeneous population of large catabolic organelles regarding their complex ultrastructure and differential distribution of autophagic and lysosomal marker proteins. Finally, we generated duodenal organoids/enteroids from biopsies that recapitulated all MVID hallmarks, demonstrating the potential of this disease model for personalized medicine.

2.
Traffic ; 19(8): 639-649, 2018 08.
Article in English | MEDLINE | ID: mdl-29673018

ABSTRACT

Immunogold labeling of permeabilized whole-mount cells or thin-sectioned material is widely used for the subcellular localization of biomolecules at the high spatial resolution of electron microscopy (EM). Those approaches are well compatible with either 3-dimensional (3D) reconstruction of organelle morphology and antigen distribution or with rapid cryofixation-but not easily with both at once. We describe here a specimen preparation and labeling protocol for animal cell cultures, which represents a novel blend of specifically adapted versions of established techniques. It combines the virtues of reliably preserved organelle ultrastructure, as trapped by rapid freezing within milliseconds followed by freeze-substitution and specimen rehydration, with the advantages of robust labeling of intracellular constituents in 3D through means of pre-embedding NANOGOLD-silver immunocytochemistry. So obtained thin and semi-thick epoxy resin sections are suitable for transmission EM imaging, as well as tomographic reconstruction and modeling of labeling patterns in the 3D cellular context.


Subject(s)
Microscopy, Electron, Transmission/methods , Microscopy, Immunoelectron/methods , Tomography/methods , Animals , Antigens/chemistry , Caco-2 Cells , Cryopreservation/methods , Epoxy Compounds/chemistry , Freezing , Gold/chemistry , HeLa Cells , Humans , Immunohistochemistry , Nanoparticles/chemistry , Pressure , Silver/chemistry
3.
Traffic ; 18(7): 453-464, 2017 07.
Article in English | MEDLINE | ID: mdl-28407399

ABSTRACT

Microvillus inclusion disease (MVID) is a congenital enteropathy characterized by accumulation of vesiculo-tubular endomembranes in the subapical cytoplasm of enterocytes, historically termed "secretory granules." However, neither their identity nor pathophysiological significance is well defined. Using immunoelectron microscopy and tomography, we studied biopsies from MVID patients (3× Myosin 5b mutations and 1× Syntaxin3 mutation) and compared them to controls and genome-edited CaCo2 cell models, harboring relevant mutations. Duodenal biopsies from 2 patients with novel Myosin 5b mutations and typical clinical symptoms showed unusual ultrastructural phenotypes: aberrant subapical vesicles and tubules were prominent in the enterocytes, though other histological hallmarks of MVID were almost absent (ectopic intra-/intercellular microvilli, brush border atrophy). We identified these enigmatic vesiculo-tubular organelles as Rab11-Rab8-positive recycling compartments of altered size, shape and location harboring the apical SNARE Syntaxin3, apical transporters sodium-hydrogen exchanger 3 (NHE3) and cystic fibrosis transmembrane conductance regulator. Our data strongly indicate that in MVID disrupted trafficking between cargo vesicles and the apical plasma membrane is the primary cause of a defect of epithelial polarity and subsequent facultative loss of brush border integrity, leading to malabsorption. Furthermore, they support the notion that mislocalization of transporters, such as NHE3 substantially contributes to the reported sodium loss diarrhea.


Subject(s)
Enterocytes/metabolism , Malabsorption Syndromes/metabolism , Microvilli/pathology , Mucolipidoses/metabolism , Secretory Vesicles/metabolism , rab GTP-Binding Proteins/metabolism , Caco-2 Cells , Cell Membrane/metabolism , Enterocytes/ultrastructure , Humans , Malabsorption Syndromes/genetics , Male , Microvilli/genetics , Microvilli/metabolism , Mucolipidoses/genetics , Mutation , Myosin Type V/genetics , Protein Transport , Qa-SNARE Proteins/genetics , Secretory Vesicles/ultrastructure
4.
Traffic ; 16(6): 617-34, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25677580

ABSTRACT

The late endosomal adaptor protein LAMTOR2/p14 is essential for tissue homeostasis by controlling MAPK and mTOR signaling, which in turn regulate cell growth and proliferation, migration and spreading. Moreover, LAMTOR2 critically controls architecture and function of the endocytic system, including epidermal growth factor receptor (EGFR) degradation in lysosomes, positioning of late endosomes and defense against intracellular pathogens. Here we describe the multifaceted ultrastructural phenotype of the endo/lysosomal system of LAMTOR2-deficient mouse embryonic fibroblasts. Quantitative (immuno-)electron microscopy of cryo-fixed samples revealed significantly reduced numbers of recycling tubules emanating from maturing multivesicular bodies (MVB). Instead, a distinct halo of vesicles surrounded MVB, tentatively interpreted as detached, jammed recycling tubules. These morphological changes in LAMTOR2-deficient cells correlated with the presence of growth factors (e.g. EGF), but were similarly induced in control cells by inactivating mTOR. Furthermore, proper transferrin receptor trafficking and recycling were apparently dependent on an intact LAMTOR complex. Finally, a severe imbalance in the relative proportions of endo/lysosomes was found in LAMTOR2-deficient cells, resulting from increased amounts of mature MVB and (autophago)lysosomes. These observations suggest that the LAMTOR/Ragulator complex is required not only for maintaining the homeostasis of endo/lysosomal subpopulations but also contributes to the proper formation of MVB-recycling tubules, and regulation of membrane/cargo recycling from MVB.


Subject(s)
Endosomes/metabolism , Lysosomes/metabolism , Proteins/metabolism , Animals , Cell Line , Endosomes/ultrastructure , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Lysosomes/ultrastructure , Mice , Multivesicular Bodies/metabolism , Multivesicular Bodies/ultrastructure , Protein Transport , Proteins/genetics
5.
Traffic ; 14(8): 886-94, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23631675

ABSTRACT

Electrospun nanofibres are an excellent cell culture substrate, enabling the fast and non-disruptive harvest and transfer of adherent cells for microscopical and biochemical analyses. Metabolic activity and cellular structures are maintained during the only half a minute-long harvest and transfer process. We show here that such samples can be optimally processed by means of cryofixation combined either with freeze-substitution, sample rehydration and cryosection-immunolabelling or with freeze-fracture replica-immunolabelling. Moreover, electrospun fibre substrates are equally suitable for complementary approaches, such as biochemistry, fluorescence microscopy and cytochemistry.


Subject(s)
Cryoelectron Microscopy/methods , Caco-2 Cells , Extracellular Space/chemistry , Gelatin/chemistry , HeLa Cells , Humans , Immunohistochemistry/methods , Nanofibers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...