Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pract Radiat Oncol ; 12(3): e221-e231, 2022.
Article in English | MEDLINE | ID: mdl-34929403

ABSTRACT

PURPOSE: Mask-immobilized stereotactic radiosurgery (SRS) using a gating window is an emerging technology. However, the amount of intracranial tumor motion that can be tolerated during treatment while satisfying clinical dosimetric goals is unknown. The purpose of this study was to quantify the sensitivity of target dose to tumor motion. METHODS AND MATERIALS: In clinical SRS plans, where a nose marker was tracked as surrogate for target motion, translational and rotational target movements were simulated using nose-marker displacements of ±0.5 mm, ±1.0 mm, or ±1.5 mm. The effect on minimum dose to 99% of the target (D99) and percent target coverage by prescription dose was quantified using mixed-effect modeling with variables: displacement, target volume, and location. RESULTS: The effect on dose metrics is statistically larger for translational displacements compared with rotational displacements, and the effect of pitch rotations is statistically larger compared with yaw rotations. The mixed-effect model for translations showed that displacement and target volume are statistically significant variables, for rotation the variable target distance to rotation axis is additionally significant. For mean target volume (12.6 cc) and translational nose-marker displacements of 0.5 mm, 1.0 mm, and 1.5 mm, D99 decreased by 2.2%, 7.1%, and 13.0%, and coverage by 0.4%, 1.8%, and 4.4%, respectively. For mean target volume, mean distance midpoint-target to pitch axis (7.6cm), and rotational nose-marker displacement of 0.5 mm, 1.0 mm, and 1.5 mm, D99 decreased by 1.0%, 3.6%, and 6.9%, and coverage by 0.2%, 0.8%, and 1.9%, respectively. For rotational yaw axis displacement, mean distance midpoint-target axis (4.2cm), D99 decreased by 0.3%, 1.2%, and 2.5%, and coverage by 0.1%, 0.2%, and 0.5%, respectively. CONCLUSIONS: Simulated target displacements showed that sensitivity of tumor dose to motion depends on both target volume and target location. Suggesting that patient- and target-specific thresholds may be implemented for optimizing the balance between dosimetric plan accuracy and treatment prolongation caused by out-of-tolerance motion.


Subject(s)
Brain Neoplasms , Radiosurgery , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Humans , Motion , Radiometry , Radiosurgery/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
2.
J Appl Clin Med Phys ; 20(6): 79-90, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31083776

ABSTRACT

PURPOSE: Despite their availability and simplicity of use, Electronic Portal Imaging Devices (EPIDs) have not yet replaced detector arrays for patient specific QA in 3D. The purpose of this study is to perform a large scale dosimetric evaluation of transit and non-transit EPID dosimetry against absolute dose measurements in 3D. METHODS: After evaluating basic dosimetric characteristics of the EPID and two detector arrays (Octavius 1500 and Octavius 1000SRS ), 3D dose distributions for 68 VMAT arcs, and 10 IMRT plans were reconstructed within the same phantom geometry using transit EPID dosimetry, non-transit EPID dosimetry, and the Octavius 4D system. The reconstructed 3D dose distributions were directly compared by γ-analysis (2L2 = 2% local/2 mm and 3G2 = 3% global/2 mm, 50% isodose) and by the percentage difference in median dose to the high dose volume (%∆HDVD 50 ). RESULTS: Regarding dose rate dependency, dose linearity, and field size dependence, the agreement between EPID dosimetry and the two detector arrays was found to be within 1.0%. In the 2L2 γ-comparison with Octavius 4D dose distributions, the average γ-pass rate value was 92.2 ± 5.2%(1SD) and 94.1 ± 4.3%(1SD) for transit and non-transit EPID dosimetry, respectively. 3G2 γ-pass rate values were higher than 95% in 150/156 cases. %∆HDVD 50 values were within 2% in 134/156 cases and within 3% in 155/156 cases. With regard to the clinical classification of alerts, 97.5% of the treatments were equally classified by EPID dosimetry and Octavius 4D. CONCLUSION: Transit and non-transit EPID dosimetry are equivalent in dosimetric terms to conventional detector arrays for patient specific QA. Non-transit 3D EPID dosimetry can be readily used for pre-treatment patient specific QA of IMRT and VMAT, eliminating the need of phantom positioning.


Subject(s)
Algorithms , Particle Accelerators/instrumentation , Phantoms, Imaging , Quality Assurance, Health Care/standards , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Radiotherapy Dosage
3.
Phys Med Biol ; 63(4): 045023, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29461974

ABSTRACT

Recently flattening filter free (FFF) beams became available for application in modern radiotherapy. There are several advantages of FFF beams over conventional flattening filtered (cFF) beams, however differences in beam spectra at the point of interest in a phantom potentially affect the ion chamber response. Beams are also non-uniform over the length of a typical reference ion chamber and recombination is usually larger. Despite several studies describing FFF beam characteristics, only a limited number of studies investigated their effect on k Q factors. Some of those studies predicted significant discrepancies in k Q factors (0.4% up to 1.0%) if TPR20,10 based codes of practice (CoPs) were to be used. This study addresses the question to which extent k Q factors, based on a TPR20,10 CoP, can be applied in clinical reference dosimetry. It is the first study that compares k Q factors measured directly with an absorbed dose to water primary standard in FFF-cFF pairs of clinical photon beams. This was done with a transportable water calorimeter described elsewhere. The measurements corrected for recombination and beam radial non-uniformity were performed in FFF-cFF beam pairs at 6 MV and 10 MV of an Elekta Versa HD for a selection of three different Farmer-type ion chambers (eight serial numbers). The ratio of measured k Q factors of the FFF-cFF beam pairs were compared with the TPR20,10 CoPs of the NCS and IAEA and the %dd(10) x CoP of the AAPM. For the TPR20,10 based CoPs differences less than 0.23% were found in k Q factors between the corresponding FFF-cFF beams with standard uncertainties smaller than 0.35%, while for the %dd(10) x these differences were smaller than 0.46% and within the expanded uncertainty of the measurements. Based on the measurements made with the equipment described in this study the authors conclude that the k Q factors provided by the NCS-18 and IAEA TRS-398 codes of practice can be applied for flattening filter free beams without additional correction. However, existing codes of practice cannot be applied ignoring the significant volume averaging effect of the FFF beams over the ion chamber cavity. For this a corresponding volume averaging correction must be applied.


Subject(s)
Calorimetry/methods , Photons , Radiation Dosimeters/standards , Calorimetry/instrumentation , Phantoms, Imaging , Radiometry/instrumentation , Radiometry/methods , Radiotherapy Dosage , Uncertainty
4.
Phys Imaging Radiat Oncol ; 5: 44-51, 2018 Jan.
Article in English | MEDLINE | ID: mdl-33458368

ABSTRACT

BACKGROUND AND PURPOSE: External dosimetry audits are powerful quality assurance instruments for radiotherapy. The aim of this study was to implement an electron dosimetry audit based on a contemporary code of practice within the requirements for calibration laboratories performing proficiency tests. This involved the determination of suitable acceptance criteria based on thorough uncertainty analyses. MATERIALS AND METHODS: Subject of the audit was the determination of absorbed dose to water, D w, and the beam quality specifier, R 50,dos. Fifteen electron beams were measured in four institutes according to the Belgian-Dutch code of practice for high-energy electron beams. The expanded uncertainty (k = 2) for the D w values was 3.6% for a Roos chamber calibrated in 60Co and 3.2% for a Roos chamber cross-calibrated against a Farmer chamber. The expanded uncertainty for the beam quality specifier, R 50,dos, was 0.14 cm. The audit acceptance levels were based on the expanded uncertainties for the comparison results and estimated to be 2.4%. RESULTS: The audit was implemented and validated successfully. All D w audit results were satisfactory with differences in D w values mostly smaller than 0.5% and always smaller than 1%. Except for one, differences in R 50,dos were smaller than 0.2 cm and always smaller than 0.3 cm. CONCLUSIONS: An electron dosimetry audit based on absorbed dose to water and present-day requirements for calibration laboratories performing proficiency tests was successfully implemented. It proved international traceability of the participants value with an uncertainty better than 3.6% (k = 2).

5.
Radiother Oncol ; 117(3): 407-11, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26631644

ABSTRACT

PURPOSE: To systematically evaluate machine specific quality assurance (QA) for volumetric modulated arc therapy (VMAT) based on log files by applying a dynamic benchmark plan. METHODS AND MATERIALS: A VMAT benchmark plan was created and tested on 18 Elekta linacs (13 MLCi or MLCi2, 5 Agility) at 4 different institutions. Linac log files were analyzed and a delivery robustness index was introduced. For dosimetric measurements an ionization chamber array was used. Relative dose deviations were assessed by mean gamma for each control point and compared to the log file evaluation. RESULTS: Fourteen linacs delivered the VMAT benchmark plan, while 4 linacs failed by consistently terminating the delivery. The mean leaf error (±1SD) was 0.3±0.2 mm for all linacs. Large MLC maximum errors up to 6.5 mm were observed at reversal positions. Delivery robustness index accounting for MLC position correction (0.8-1.0) correlated with delivery time (80-128 s) and depended on dose rate performance. Dosimetric evaluation indicated in general accurate plan reproducibility with γ(mean)(±1 SD)=0.4±0.2 for 1 mm/1%. However single control point analysis revealed larger deviations and attributed well to log file analysis. CONCLUSION: The designed benchmark plan helped identify linac related malfunctions in dynamic mode for VMAT. Log files serve as an important additional QA measure to understand and visualize dynamic linac parameters.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Particle Accelerators , Quality Assurance, Health Care , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Intensity-Modulated/standards , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...