Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 8(33): 18227-18233, 2018 May 17.
Article in English | MEDLINE | ID: mdl-35541118

ABSTRACT

During electron microscopy observations of uranium-bearing phases and solutions in a liquid cell, the electron beam induced radiolysis causes changes in the chemistry of the system. This could be useful for investigating accelerated alteration of UO2 and can be also used to monitor radiolytic effects. Low concentrations of bromide in aqueous solutions are known to reduce the generation rate of H2O2 during radiolysis and increase H2 production. We deduced the presence of radiolytic H2O2 by monitoring the formation of a uranyl peroxide solid from both solid UO2 and a solution of ammonium uranyl carbonate at neutral pH. Additionally, the effect of bromine on water radiolysis was investigated through chemical modelling and in situ electron microscopy. By measuring the contrast in the electron microscopy images it was possible to monitor H2O2 formation and diffusion from the irradiated zone in agreement with the models.

2.
Heliyon ; 3(2): e00242, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28217750

ABSTRACT

We announce a new class of carbon allotropes. The basis of this new classification resides on the concept of combining hexagonal diamond (sp3 bonded carbon - lonsdaleite) and ring carbon (sp2 bonded carbon - graphene). Since hexagonal diamond acts as an insulator and sp2 bonded rings act as conductors, these predicted materials have potential applications for transistors and other electronic components. We describe the structure of a proposed series of carbon allotropes, novamene, and carry out a detailed computational analysis of the structural and electronic properties of the simplest compound in this class: the single-ring novamene. In addition, we suggest how hundreds of different allotropes of carbon could be constructed within this class.

3.
J Phys Chem A ; 118(51): 12105-10, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25423148

ABSTRACT

We report on a subtle global feature of the mass action kinetics equations for water radiolysis that results in predictions of a critical behavior in H2O2 and associated radical concentrations. While radiolysis kinetics have been studied extensively in the past, it is only in recent years that high-speed computing has allowed the rapid exploration of the solution over widely varying dose and compositional conditions. We explore the radiolytic production of H2O2 under various externally fixed conditions of molecular H2 and O2 that have been regarded as problematic in the literature-specifically, "jumps" in predicted concentrations, and inconsistencies between predictions and experiments have been reported for α radiolysis. We computationally map-out a critical concentration behavior for α radiolysis kinetics using a comprehensive set of reactions. We then show that all features of interest are accurately reproduced with 15 reactions. An analytical solution for steady-state concentrations of the 15 reactions reveals regions in [H2] and [O2] where the H2O2 concentration is not unique-both stable and unstable concentrations exist. The boundary of this region can be characterized analytically as a function of G-values and rate constants independent of dose rate. Physically, the boundary can be understood as separating a region where a steady-state H2O2 concentration exists from one where it does not exist without a direct decomposition reaction. We show that this behavior is consistent with reported α radiolysis data and that no such behavior should occur for γ radiolysis. We suggest experiments that could verify or discredit a critical concentration behavior for α radiolysis and could place more restrictive ranges on G-values from derived relationships between them.

4.
Med Phys ; 34(1): 49-54, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17278489

ABSTRACT

The purpose of this study was to calculate a more accurate dose rate constant for the 131Cs (model CS-1, IsoRay Medical, Inc., Richland, WA) interstitial brachytherapy seed. Previous measurements of the dose rate constant for this seed have been reported by others with incongruity. Recent direct measurements by thermoluminescence dosimetry and by gamma-ray spectroscopy were about 15% greater than earlier thermoluminescence dosimetry measurements. Therefore, we set about to calculate independent values by a Monte Carlo approach that combined three estimates as a consistency check, and to quantify the computational uncertainty. The calculated dose rate constant for the 131Cs seed was 1.040 cGy h(-1) U(-1) for an ionization chamber model and 1.032 cGy h(-1) U(-1) for a circular ring model. A formal value of 2.2% uncertainty was calculated for both values. The range of our multiestimate values were from 1.032 to 1.061 cGy h(-1) U(-1). We also modeled three 125I seeds with known dose rate constants to test the accuracy of this study's approach.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Cesium Radioisotopes/analysis , Cesium Radioisotopes/therapeutic use , Models, Biological , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Body Burden , Computer Simulation , Models, Statistical , Monte Carlo Method , Radiotherapy Dosage , Relative Biological Effectiveness
SELECTION OF CITATIONS
SEARCH DETAIL
...