Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 123(1): 247-60, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23221338

ABSTRACT

IL-17-producing CD8+ T (Tc17) cells are detectible in multiple sclerosis (MS) lesions; however, their contribution to the disease is unknown. To identify functions of Tc17 cells, we induced EAE, a murine model of MS, in mice lacking IFN regulatory factor 4 (IRF4). IRF4-deficient mice failed to generate Tc17 and Th17 cells and were resistant to EAE. After adoptive transfer of WT CD8+ T cells and subsequent immunization for EAE induction in these mice, the CD8+ T cells developed a Tc17 phenotype in the periphery but could not infiltrate the CNS. Similarly, transfer of small numbers of WT CD4+ T cells alone did not evoke EAE, but when transferred together with CD8+ T cells, IL-17-producing CD4+ (Th17) T cells accumulated in the CNS and mice developed severe disease. Th17 accumulation and development of EAE required IL-17A production by CD8+ T cells, suggesting that Tc17 cells are required to promote CD4+ T cell-mediated induction of EAE. Accordingly, patients with early-stage MS harbored a greater number of Tc17 cells in the cerebrospinal fluid than in peripheral blood. Our results reveal that Tc17 cells contribute to the initiation of CNS autoimmunity in mice and humans by supporting Th17 cell pathogenicity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Central Nervous System/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Interleukin-17/immunology , Th17 Cells/immunology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Central Nervous System/metabolism , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/immunology , Interferon Regulatory Factors/metabolism , Interleukin-17/genetics , Interleukin-17/metabolism , Mice , Mice, Knockout , Th17 Cells/metabolism , Th17 Cells/pathology , Th17 Cells/transplantation
2.
Appl Microbiol Biotechnol ; 88(2): 477-84, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20625719

ABSTRACT

Recombinant Cupriavidus necator H 16 with a novel metabolic pathway using a cobalamin-dependent mutase was exploited to produce 2-hydroxyisobutyric acid (2-HIBA) from renewable resources through microbial fermentation. 2-HIBA production capacities of different strains of C. necator H 16 deficient in the PHB synthase gene and genetically engineered to enable the production of 2-HIBA from the intracellular PHB precursor (R)-3-hydroxybutyryl-CoA were evaluated in 48 parallel milliliter-scale stirred tank bioreactors (V = 11 mL). The effects of media composition, limitations, pH, and feed rate were studied with respect to the overall process performances of the different recombinant strains. 2-HIBA production was at a maximum at nitrogen limiting conditions and if the pH was controlled between 6.8 and 7.2 under fed-batch operating conditions (intermittent fructose addition). The final concentration of 2-HIBA was 7.4 g L(-1) on a milliliter scale. Best reaction conditions identified on the milliliter scale were transferred to a laboratory-scale fed-batch process in a stirred tank bioreactor (V = 2 L). Two different process modes for the production of 2-HIBA, a single-phase and a dual-phase fermentation procedure, were evaluated and compared on a liter scale. The final concentration of 2-HIBA was 6.4 g L(-1) on a liter scale after 2 days of cultivation.


Subject(s)
Bioreactors , Cupriavidus necator/metabolism , Hydroxybutyrates/metabolism , Industrial Microbiology/methods , Acyltransferases/genetics , Culture Media , Cupriavidus necator/genetics , Cupriavidus necator/growth & development , Fermentation , Gene Deletion , Genetic Engineering , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Vitamin B 12/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...