Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 130(1): 258-271, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31581151

ABSTRACT

Potentiating radiotherapy and chemotherapy by inhibiting DNA damage repair is proposed as a therapeutic strategy to improve outcomes for patients with solid tumors. However, this approach risks enhancing normal tissue toxicity as much as tumor toxicity, thereby limiting its translational impact. Using NU5455, a newly identified highly selective oral inhibitor of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activity, we found that it was indeed possible to preferentially augment the effect of targeted radiotherapy on human orthotopic lung tumors without influencing acute DNA damage or a late radiation-induced toxicity (fibrosis) to normal mouse lung. Furthermore, while NU5455 administration increased both the efficacy and the toxicity of a parenterally administered topoisomerase inhibitor, it enhanced the activity of doxorubicin released locally in liver tumor xenografts without inducing any adverse effect. This strategy is particularly relevant to hepatocellular cancer, which is treated clinically with localized drug-eluting beads and for which DNA-PKcs activity is reported to confer resistance to treatment. We conclude that transient pharmacological inhibition of DNA-PKcs activity is effective and tolerable when combined with localized DNA-damaging therapies and thus has promising clinical potential.


Subject(s)
Carcinoma, Hepatocellular , DNA-Activated Protein Kinase/antagonists & inhibitors , Liver Neoplasms, Experimental , Neoplasm Proteins/antagonists & inhibitors , Protein Kinase Inhibitors , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/pathology , DNA-Activated Protein Kinase/metabolism , Doxorubicin/pharmacology , Humans , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/enzymology , Liver Neoplasms, Experimental/pathology , MCF-7 Cells , Mice , Neoplasm Proteins/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays
2.
Cell Rep ; 21(5): 1386-1398, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-29091774

ABSTRACT

Selective recruitment of protein kinases to the Hsp90 system is mediated by the adaptor co-chaperone Cdc37. We show that assembly of CDK4 and CDK6 into protein complexes is differentially regulated by the Cdc37-Hsp90 system. Like other Hsp90 kinase clients, binding of CDK4/6 to Cdc37 is blocked by ATP-competitive inhibitors. Cdc37-Hsp90 relinquishes CDK6 to D3- and virus-type cyclins and to INK family CDK inhibitors, whereas CDK4 is relinquished to INKs but less readily to cyclins. p21CIP1 and p27KIP1 CDK inhibitors are less potent than the INKs at displacing CDK4 and CDK6 from Cdc37. However, they cooperate with the D-type cyclins to generate CDK4/6-containing ternary complexes that are resistant to cyclin D displacement by Cdc37, suggesting a molecular mechanism to explain the assembly factor activity ascribed to CIP/KIP family members. Overall, our data reveal multiple mechanisms whereby the Hsp90 system may control formation of CDK4- and CDK6-cyclin complexes under different cellular conditions.


Subject(s)
Cell Cycle Proteins/metabolism , Chaperonins/metabolism , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , HSP90 Heat-Shock Proteins/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Aminopyridines/chemistry , Aminopyridines/metabolism , Benzimidazoles/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Chaperonins/antagonists & inhibitors , Chaperonins/genetics , Cyclin D/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Fluorescence Resonance Energy Transfer , HSP90 Heat-Shock Proteins/genetics , Humans , Inhibitory Concentration 50 , Kinetics , Piperazines/chemistry , Piperazines/metabolism , Protein Binding , Purines/chemistry , Purines/metabolism , Pyridines/chemistry , Pyridines/metabolism , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...