Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Endocrinology ; 157(6): 2367-79, 2016 06.
Article in English | MEDLINE | ID: mdl-27064940

ABSTRACT

Kisspeptin-neurokinin B-dynorphin (KNDy) cells of the hypothalamus are a key component in the neuroendocrine regulation of GnRH secretion. Evidence in sheep and other species suggests that dynorphin released by KNDy cells inhibits pulsatile GnRH secretion by acting upon κ-opioid receptors (KOR). However, the precise anatomical location and neurochemical phenotype of KOR-expressing cells in sheep remain unknown. To this end, we determined the distribution of KOR mRNA and protein in the brains of luteal phase ewes, using an ovine specific KOR mRNA probe for in situ hybridization and an antibody whose specificity we confirmed by Western blot analyses and blocking peptide controls. KOR cells were observed in a number of regions, including the preoptic area (POA); anterior hypothalamic area; supraoptic and paraventricular nuclei; ventromedial, dorsomedial, and lateral hypothalamus; and arcuate nucleus. Next, we determined whether KOR is colocalized in KNDy and/or GnRH cells. Dual-label immunofluorescence and confocal analysis of the KNDy population showed a high degree of colocalization, with greater than 90% of these neurons containing KOR. Surprisingly, GnRH cells also showed high levels of colocalization in sheep, ranging from 74.4% to 95.4% for GnRH cells in the POA and medial basal hypothalamus, respectively. Similarly, 97.4% of GnRH neurons in the POA of ovariectomized, steroid-primed female rats also contained immunoreactive KOR protein. These findings suggest that the inhibitory effects of dynorphin on pulsatile GnRH secretion may occur either indirectly by actions upon KOR within the KNDy population and/or directly via the activation of KOR on GnRH cells.


Subject(s)
Brain/metabolism , Dynorphins/metabolism , Gonadotropin-Releasing Hormone/metabolism , Receptors, Opioid, kappa/metabolism , Animals , Blotting, Western , Female , Fluorescent Antibody Technique , Hypothalamus/metabolism , In Situ Hybridization , Ovariectomy , Rats , Sheep
2.
Behav Brain Res ; 289: 118-24, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25930215

ABSTRACT

One principle of the multiple memory systems hypothesis posits that the hippocampus-based and striatum-based memory systems compete for control over learning. Consistent with this notion, previous research indicates that the cholinergic system of the hippocampus plays a role in modulating the preference for a hippocampus-based place learning strategy over a striatum-based stimulus--response learning strategy. Interestingly, in the hippocampus, greater activity and higher protein levels of choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine, are associated with better performance on hippocampus-based learning and memory tasks. With this in mind, the primary aim of the current study was to determine if higher levels of ChAT and the high-affinity choline uptake transporter (CHT) in the hippocampus were associated with a preference for a hippocampus-based place learning strategy on a task that also could be solved by relying on a striatum-based stimulus--response learning strategy. Results confirmed that levels of ChAT in the dorsal region of the hippocampus were associated with a preference for a place learning strategy on a water maze task that could also be solved by adopting a stimulus-response learning strategy. Consistent with previous studies, the current results support the hypothesis that the cholinergic system of the hippocampus plays a role in balancing competition between memory systems that modulate learning strategy preference.


Subject(s)
Choline O-Acetyltransferase/metabolism , Hippocampus/enzymology , Maze Learning/physiology , Animals , Cues , Male , Membrane Transport Proteins/metabolism , Rats , Rats, Long-Evans
3.
Horm Behav ; 74: 77-85, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25917862

ABSTRACT

This article is part of a Special Issue "Estradiol and cognition". Many of the biochemical, structural, and functional changes that occur as the female brain ages are influenced by changes in levels of estrogens. Administration of estrogens begun during a critical window near menopause is hypothesized to prevent or delay age-associated cognitive decline. However, due to potential health risks women often limit use of estrogen therapy to a few years to treat menopausal symptoms. The long-term consequences for the brain of short-term use of estrogens are unknown. Interestingly, there are preliminary data to suggest that short-term use of estrogens during the menopausal transition may afford long-term cognitive benefits to women as they age. Thus, there is the intriguing possibility that short-term estrogen therapy may provide lasting benefits to the brain and cognition. The focus of the current review is an examination of the long-term impact for cognition of midlife use of estrogens. We review data from our lab and others indicating that the ability of midlife estrogens to impact estrogen receptors in the hippocampus may contribute to its ability to exert lasting impacts on cognition in aging females.


Subject(s)
Cognition/drug effects , Cognitive Aging , Estrogens/administration & dosage , Menopause/drug effects , Aged , Aging/drug effects , Aging/psychology , Animals , Brain/drug effects , Brain/physiology , Cognition Disorders/drug therapy , Drug Administration Schedule , Female , Humans , Menopause/psychology , Middle Aged , Receptors, Estrogen/physiology
4.
Endocrinology ; 154(2): 842-52, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23264616

ABSTRACT

We previously demonstrated that aged ovariectomized rats that had received prior estradiol treatment in middle age exhibited enhanced spatial memory and increased levels of estrogen receptor (ER)-α in the hippocampus long after estradiol treatment was terminated. The implication for cognition of increased levels of ERα resulting from prior estradiol exposure is unknown. In the absence of estrogens, growth factors, including IGF-I, can induce ERα-mediated transcription through ligand-independent mechanisms. Our current goal was to determine whether IGF-I mediates the ability of short-term exposure to estradiol to exert long-term effects on cognition and the hippocampus of aging females. Ovariectomized middle-aged rats were implanted with estradiol or cholesterol vehicle capsules. After 40 days, all capsules were removed and drug treatments were initiated. Half of each hormone treatment group received chronic intracerebroventricular delivery of the IGF-I receptor antagonist JB1, and the other half received artificial cerebrospinal fluid vehicle. Rats were tested on a spatial memory radial-arm maze task and hippocampi were immunostained for proteins of interest by Western blotting. As expected, previous treatment with estradiol enhanced spatial memory and increased levels of ERα in the hippocampus. JB1 reversed these effects. Previous treatment with estradiol resulted in lasting increases in levels of IGF-I receptors and phosphorylation of ERK/MAPK, a downstream signaling molecule of both ERα and IGF-I receptors, and increased levels of the ERα-regulated protein, choline acetyltransferase. JB1 blocked effects on ERK/MAPK and choline acetyltransferase. Results indicate that activation of IGF-I receptors is necessary for prior estradiol exposure to exert lasting impact on the hippocampus and memory.


Subject(s)
Cognition/drug effects , Estradiol/pharmacology , Hippocampus/drug effects , Insulin-Like Growth Factor I/physiology , Memory/drug effects , Aging/drug effects , Animals , Estrogen Receptor alpha/metabolism , Female , Hippocampus/physiology , Insulin-Like Growth Factor I/analogs & derivatives , Maze Learning/drug effects , Maze Learning/physiology , Ovariectomy , Rats , Receptor, IGF Type 1/antagonists & inhibitors
5.
PLoS One ; 7(12): e51385, 2012.
Article in English | MEDLINE | ID: mdl-23240018

ABSTRACT

We previously demonstrated that aged ovariectomized rats that had received prior estradiol treatment in middle-age exhibited increased levels of estrogen receptor alpha (ERα) in the hippocampus as well as enhanced hippocampal dependent memory as compared to aged rats that had not received mid-life estradiol treatment. These effects persisted long after the estradiol treatment had been terminated. The goal of the current experiment was to determine if increased expression of ERα in the hippocampus, in the absence of exogenously administered estrogens, can impact the hippocampus and cognitive function in aging ovariectomized rats. Middle-aged rats were trained for 24 days on an eight-arm radial maze spatial memory task. All rats were then ovariectomized. Forty days later, rats received either lentiviral delivery to the hippocampus of the gene encoding ERα (lenti-ERα) or a control virus. Rats were tested on delay trials in the radial-maze in which delays of varying lengths were imposed between the fourth and fifth arm choices. Following behavior testing, hippocampi were immunostained using western blotting for ERα, the ERα-regulated protein choline acetyltransferase, and phosphorylation of the ERα-regulated kinases, ERK/MAPK and Akt. Results revealed that aging ovariectomized rats that received delivery of lenti-ERα to the hippocampus exhibited enhanced spatial memory as indicated by increased arm-choice accuracy across delays as compared to ovariectomized rats that received control virus. Western blot data revealed that lenti-ERα delivery significantly increased levels of ERα and phosphorylated ERK/MAPK and had no impact on levels of ChAT or phosphorylation of Akt. Results indicate that increasing hippocampal levels of ERα in aging females in the absence of ovarian or exogenously administered estrogens leads to increases in phosphorylation of ERK/MAPK as well as in enhanced memory.


Subject(s)
Aging , Estrogen Receptor alpha , Memory , Aging/genetics , Aging/metabolism , Animals , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Genetic Vectors , Hippocampus/metabolism , Maze Learning , Memory/drug effects , Memory/physiology , Mitogen-Activated Protein Kinases/metabolism , Ovariectomy , Rats
6.
Neurobiol Learn Mem ; 98(3): 284-90, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23010136

ABSTRACT

Actin rearrangement, the polymerization of globular actin (G-actin) to filamentous actin, causes morphological changes in dendritic spines and is hypothesized to be a substrate of learning and memory. The ovarian hormone estradiol promotes hippocampal actin rearrangement and enhances performance on hippocampus-dependent tasks, including object placement memory. The goals of the current study were to determine a role for actin rearrangement and its regulatory pathway in object placement memory in female rats and to determine if estradiol impacts actin rearrangement in ovariectomized rats during the performance of the task. In an initial experiment, young adult Long-Evans rats were ovariectomized and implanted with capsules containing either cholesterol vehicle or estradiol. Bilateral intrahippocampal infusions of aCSF vehicle or the actin rearrangement inhibitor, latrunculin A, were administered 15 min prior to initiation of the object placement task. Latrunculin A dose-dependently impaired object placement memory. Estradiol had no impact on the ability of latrunculin A to affect performance. In a second experiment, rats were ovariectomized and received implants containing cholesterol or estradiol. Half of each hormone treatment group was exposed to the object placement memory task and half underwent control procedures. Immediately following completion of behavior, rats were euthanized and hippocampi removed. Western blotting was used to measure hippocampal levels of phosphorylated and total levels of a regulator of actin polymerization, the actin depolymerization factor cofilin. Exposure to the object placement memory task resulted in significant increases in phosphorylated levels of cofilin. Estradiol treatment had no impact on protein levels. These data support a role for hippocampal actin rearrangement and its regulatory proteins in object placement memory in female rats and suggest that chronic estradiol treatment does not impact hippocampal actin arrangement.


Subject(s)
Actins/metabolism , Hippocampus/drug effects , Maze Learning/drug effects , Memory/drug effects , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Dendritic Spines/drug effects , Dendritic Spines/physiology , Estradiol/pharmacology , Female , Hippocampus/physiology , Maze Learning/physiology , Memory/physiology , Ovariectomy , Rats , Rats, Long-Evans , Space Perception/drug effects , Space Perception/physiology , Thiazolidines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...