Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Clin Exp Med ; 24(1): 2, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231464

ABSTRACT

The origin of metastases is a topic that has sparked controversy. Despite recent advancements, metastatic disease continues to pose challenges. The first admitted model of how metastases develop revolves around cells breaking away from the primary tumor, known as circulating tumor cells (CTCs). These cells survive while circulating through the bloodstream and subsequently establish themselves in secondary organs, a process often referred to as the "metastatic cascade". This intricate and dynamic process involves various steps, but all the mechanisms behind metastatic dissemination are not yet comprehensively elucidated. The "seed and soil" theory has shed light on the phenomenon of metastatic organotropism and the existence of pre-metastatic niches. It is now established that these niches can be primed by factors secreted by the primary tumor before the arrival of CTCs. In particular, exosomes have been identified as important contributors to this priming. Another concept then emerged, i.e. the "genometastasis" theory, which challenged all other postulates. It emphasizes the intriguing but promising role of cell-free DNA (cfDNA) in metastasis formation through oncogenic formation of recipient cells. However, it cannot be ruled out that all these theories are intertwined. This review outlines the primary theories regarding the metastases formation that involve CTCs, and depicts cfDNA, a potential second player in the metastasis formation. We discuss the potential interrelationships between CTCs and cfDNA, and propose both in vitro and in vivo experimental strategies to explore all plausible theories.


Subject(s)
Cell-Free Nucleic Acids , Exosomes , Neoplastic Cells, Circulating , Humans , DNA
2.
Cancers (Basel) ; 15(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958343

ABSTRACT

The predominant forms of breast cancer (BC) are hormone receptor-positive (HR+) tumors characterized by the expression of estrogen receptors (ERs) and/or progesterone receptors (PRs). Patients with HR+ tumors can benefit from endocrine therapy (ET). Three types of ET are approved for the treatment of HR+ BCs and include selective ER modulators, aromatase inhibitors, and selective ER downregulators. ET is the mainstay of adjuvant treatment in the early setting and the backbone of the first-line treatment in an advanced setting; however, the emergence of acquired resistance can lead to cancer recurrence or progression. The mechanisms of ET resistance are often related to the occurrence of mutations in the ESR1 gene, which encodes the ER-alpha protein. As ESR1 mutations are hardly detectable at diagnosis but are present in 30% to 40% of advanced BC (ABC) after treatment, the timeline of testing is crucial. To manage this resistance, ESR1 testing has recently been recommended; in ER+ HER2- ABC and circulating cell-free DNA, so-called liquid biopsy appears to be the most convenient way to detect the emergence of ESR1 mutations. Technically, several options exist, including Next Generation Sequencing and ultra-sensitive PCR-based techniques. In this context, personalization of ET through the surveillance of ESR1 mutations in the plasma of HR+ BC patients throughout the disease course represents an innovative way to improve the standard of care.

3.
Sci Rep ; 13(1): 18741, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907567

ABSTRACT

Pancreatic cancer is one of the most aggressive diseases with a very poor outcome. Olaparib, a PARP inhibitor, as maintenance therapy showed benefits in patients with metastatic pancreatic adenocarcinoma bearing germline BRCA1/2 mutations. However, germline BRCA mutation has been described in only 4-7% of patients with pancreatic adenocarcinoma. A CRISPR/Cas9-mediated system was used to knock-in the c.763G > T p.(Glu255*) and c.2133C > A p.(Cys711*) mutations in cell lines to obtain truncated BRCA1 and BRCA2 proteins, respectively. A CRISPR/Cas9 ribonucleoprotein complex was assembled for each mutation and transfected into two pancreatic cell lines (T3M4 and Capan-2) and into a breast cancer cell lines (MCF7) as control. BRCA protein levels were significantly decreased in all BRCA-depleted cells (P < 0.05), proving the transfection efficiency of our CRISPR/Cas9 systems. As expected, the calculated olaparib IC50 were significantly reduced for all cell lines harbored BRCA1 or BRCA2 mutations compared to wild-type BRCA1/2 cells (P < 0.01). Furthermore, we observed a higher induction of apoptosis after 72 h olaparib treatment in BRCA-depleted cells than in wild-type cells. This strategy might offer new insights into the management of patients with pancreatic cancer and open up new perspectives based on the in vivo use of CRISPR/Cas9 strategy.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Adenocarcinoma/genetics , CRISPR-Cas Systems , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phthalazines/pharmacology , Germ-Line Mutation , Mutation , MCF-7 Cells , Pancreatic Neoplasms
4.
Sci Rep ; 13(1): 12909, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558711

ABSTRACT

Gene fusions and MET exon skipping drive oncogenesis in 8-9% and 3% of non-small cell lung cancers (NSCLC) respectively. Their detection are essential for the management of patients since they confer sensitivity to specific targeted therapies with significant clinical benefit over conventional chemotherapy. Immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) account for historical reference techniques however molecular-based technologies (RNA-based sequencing and RT-PCR) are emerging as alternative or complementary methods. Here, we evaluated the analytical performance of the fully-automated RT-PCR Idylla GeneFusion assay compared to reference methods using 35 fixed NSCLC samples. Idylla demonstrated overall agreement, sensitivity and specificity of 100% compared to RNASeq. Interestingly, it succeeded in retrieving 10 out of 11 samples with inconclusive results due to insufficient RNA quality for sequencing. Idylla showed an overall agreement, sensitivity and specificity of 90.32%, 91.67% and 89.47% compared to IHC/FISH respectively. Using commercial standards, the limit of detection of the Idylla system for the most frequent fusions and exon skipping ranges between 5 and 10 ng RNA input. These results support that the Idylla assay is a reliable and rapid option for the detection of these alterations, however a particular attention is needed for the interpretation of the expression imbalance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , In Situ Hybridization, Fluorescence , RNA , Exons/genetics , Mutation
5.
Front Oncol ; 12: 1052163, 2022.
Article in English | MEDLINE | ID: mdl-36568213

ABSTRACT

Introduction: Damage specific DNA binding protein 2 (DDB2) is an UV-indiced DNA damage recognition factor and regulator of cancer development and progression. DDB2 has dual roles in several cancers, either as an oncogene or as a tumor suppressor gene, depending on cancer localization. Here, we investigated the unresolved role of DDB2 in pancreatic ductal adenocarcinoma (PDAC). Methods: The expression level of DDB2 in pancreatic cancer tissues and its correlation with patient survival were evaluated using publicly available data. Two PDAC cell models with CRISPR-modified DDB2 expression were developed: DDB2 was repressed in DDB2-high T3M4 cells (T3M4 DDB2-low) while DDB2 was overexpressed in DDB2-low Capan-2 cells (Capan-2 DDB2-high). Immunofluorescence and qPCR assays were used to investigate epithelial-to-mesenchymal transition (EMT) in these models. Migration and invasion properties of the cells were also determined using wound healing and transwell assays. Sensitivity to 5-fluorouracil (5-FU), oxaliplatin, irinotecan and gemcitabine were finally investigated by crystal violet assays. Results: DDB2 expression level was reduced in PDAC tissues compared to normal ones and DDB2-low levels were correlated to shorter disease-free survival in PDAC patients. DDB2 overexpression increased expression of E-cadherin epithelial marker, and decreased levels of N-cadherin mesenchymal marker. Conversely, we observed opposite effects in DDB2 repression and enhanced transcription of SNAIL, ZEB1, and TWIST EMT transcription factors (EMT-TFs). Study of migration and invasion revealed that these properties were negatively correlated with DDB2 expression in both cell models. DDB2 overexpression sensitized cells to 5-fluorouracil, oxaliplatin and gemcitabine. Conclusion: Our study highlights the potential tumor suppressive effects of DDB2 on PDAC progression. DDB2 could thus represent a promising therapeutic target or biomarker for defining prognosis and predicting chemotherapy response in patients with PDAC.

6.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34451837

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the malignancies with the worst prognosis despite a decade of efforts. Up to eighty percent of patients are managed at late stages with metastatic disease, in part due to a lack of diagnosis. The effectiveness of PDAC therapies is challenged by the early and widespread metastasis. Epithelial to mesenchymal transition (EMT) is a major driver of cancer progression and metastasis. This process allows cancer cells to gain invasive properties by switching their phenotype from epithelial to mesenchymal. The importance of EMT has been largely described in PDAC, and its importance is notably highlighted by the two major subtypes found in PDAC: the classical epithelial and the quasi-mesenchymal subtypes. Quasi-mesenchymal subtypes have been associated with a poorer prognosis. EMT has also been associated with resistance to treatments such as chemotherapy and immunotherapy. EMT is associated with several key molecular markers both epithelial and mesenchymal. Those markers might be helpful as a biomarker in PDAC diagnosis. EMT might becoming a key new target of interest for the treatment PDAC. In this review, we describe the role of EMT in PDAC, its contribution in diagnosis, in the orientation and treatment follow-up. We also discuss the putative role of EMT as a new therapeutic target in the management of PDAC.

7.
Int J Mol Sci ; 21(10)2020 May 16.
Article in English | MEDLINE | ID: mdl-32429474

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death worldwide. PDAC is an aggressive disease with an 11-month median overall survival and a five-year survival of less than 5%. Incidence of PDAC is constantly increasing and is predicted to become the second leading cause of cancer in Western countries within a decade. Despite research and therapeutic development, current knowledge about PDAC molecular mechanisms still needs improvements and it seems crucial to identify novel therapeutic targets. Genomic analyses of PDAC revealed that transforming growth factor ß (TGFß) signaling pathways are modified and the SMAD4 gene is altered in 47% and 60% of cases, respectively, highlighting their major roles in PDAC development. TGFß can play a dual role in malignancy depending on the context, sometimes as an inhibitor and sometimes as an inducer of tumor progression. TGFß signaling was identified as a potent inducer of epithelial-to-mesenchymal transition (EMT), a process that confers migratory and invasive properties to epithelial cells during cancer. Therefore, aberrant TGFß signaling and EMT are linked to promoting PDAC aggressiveness. TGFß and SMAD pathways were extensively studied but the mechanisms leading to cancer promotion and development still remain unclear. This review aims to describe the complex role of SMAD4 in the TGFß pathway in patients with PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Signal Transduction , Smad4 Protein/metabolism , Transforming Growth Factor beta/metabolism , Animals , Epithelial-Mesenchymal Transition , Humans , Pancreatic Neoplasms
8.
PLoS One ; 15(1): e0227294, 2020.
Article in English | MEDLINE | ID: mdl-31940389

ABSTRACT

BACKGROUND: Cell-free DNA detection is becoming a surrogate assay for tumor genotyping. Biological fluids often content a very low amount of cell-free tumor DNA and assays able to detect very low allele frequency mutant with a few quantities of DNA are required. We evaluated the ability of the fully-automated molecular diagnostics platform Idylla for the detection of KRAS, NRAS and BRAF hotspot mutations in plasma from patients with metastatic colorectal cancer (mCRC). MATERIALS AND METHODS: First, we evaluated the limit of detection of the system using two set of laboratory made samples that mimic mCRC patient plasma, then plasma samples from patients with mCRC were assessed using Idylla system and BEAMing digital PCR technology. RESULTS: Limits of detection of 0.1%, 0.4% and 0.01% for KRAS, NRAS and BRAF respectively have been reached. With our laboratory made samples, sensitivity up to 0.008% has been reached. Among 15 patients' samples tested for KRAS mutation, 2 discrepant results were found between Idylla and BEAMing dPCR. A 100% concordance between the two assays has been found for the detection of NRAS and BRAF mutations in plasma samples. CONCLUSIONS: The Idylla system does not reach as high sensitivity as assays like ddPCR but has an equivalent sensitivity to modified NGS technics with a lower cost and a lower time to results. These data allowed to consider the Idylla system in a routine laboratory workflow for KRAS, NRAS and BRAF mutations detection in plasma.


Subject(s)
Biomarkers, Tumor/genetics , Circulating Tumor DNA/isolation & purification , Colorectal Neoplasms/diagnosis , DNA Mutational Analysis/instrumentation , Genotyping Techniques/instrumentation , Cell Line, Tumor , Circulating Tumor DNA/genetics , Clinical Trials as Topic , Colorectal Neoplasms/genetics , DNA Mutational Analysis/methods , GTP Phosphohydrolases/genetics , Gene Frequency , Genotyping Techniques/methods , Humans , Limit of Detection , Membrane Proteins/genetics , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Sensitivity and Specificity
9.
Int J Mol Sci ; 20(20)2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31635251

ABSTRACT

Damage-specific DNA-binding protein 2 (DDB2) was originally identified as a DNA damage recognition factor that facilitates global genomic nucleotide excision repair (GG-NER) in human cells. DDB2 also contributes to other essential biological processes such as chromatin remodeling, gene transcription, cell cycle regulation, and protein decay. Recently, the potential of DDB2 in the development and progression of various cancers has been described. DDB2 activity occurs at several stages of carcinogenesis including cancer cell proliferation, survival, epithelial to mesenchymal transition, migration and invasion, angiogenesis, and cancer stem cell formation. In this review, we focus on the current state of scientific knowledge regarding DDB2 biological effects in tumor development and the underlying molecular mechanisms. We also provide insights into the clinical consequences of DDB2 activity in cancers.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Susceptibility , Neoplasms/etiology , Neoplasms/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Biomarkers, Tumor , Cell Movement , Cell Proliferation , DNA Repair , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Humans , Neoplasms/pathology , Neoplasms/therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Radiation Tolerance/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...