Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-23082071

ABSTRACT

We present pulsed electron-nuclear double resonance (ENDOR) experiments which enable us to characterize the coupling between bismuth donor spin-qubits in Si and the surrounding spin-bath of (29)Si impurities which provides the dominant decoherence mechanism (nuclear spin diffusion) at low temperatures (< 16 K). Decoupling from the spin-bath is predicted and cluster correlation expansion simulations show near-complete suppression of spin diffusion, at optimal working points. The suppression takes the form of sharply peaked divergences of the spin diffusion coherence time, in contrast with previously identified broader regions of insensitivity to classical fluctuations. ENDOR data shows anisotropic contributions are comparatively weak, so the form of the divergences is independent of crystal orientation.

2.
Phys Rev Lett ; 100(16): 160505, 2008 Apr 25.
Article in English | MEDLINE | ID: mdl-18518177

ABSTRACT

We present a remarkable finding that a recently discovered [G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)10.1103/PhysRevLett.98.100504] series of pulse sequences, designed to optimally restore coherence to a qubit in the spin-boson model of decoherence, is in fact completely model independent and generically valid for arbitrary dephasing Hamiltonians given sufficiently short delay times between pulses. The series maximizes qubit fidelity versus number of applied pulses for sufficiently short delay times because the series, with each additional pulse, cancels successive orders of a time expansion for the fidelity decay. The "magical" universality of this property, which was not appreciated earlier, requires that a linearly growing set of "unknowns" (the delay times) must simultaneously satisfy an exponentially growing set of nonlinear equations that involve arbitrary dephasing Hamiltonian operators.

3.
Phys Rev Lett ; 98(7): 077601, 2007 Feb 16.
Article in English | MEDLINE | ID: mdl-17359059

ABSTRACT

We describe how the spin coherence time of a localized electron spin in solids, i.e., a solid state spin qubit, can be prolonged by applying designed electron spin resonance pulse sequences. In particular, the spin echo decay due to the spectral diffusion of the electron spin resonance frequency induced by the non-Markovian temporal fluctuations of the nuclear spin flip-flop dynamics can be strongly suppressed using multiple-pulse sequences akin to the Carr-Purcell-Meiboom-Gill pulse sequence in nuclear magnetic resonance. Spin coherence time can be enhanced by factors of 4-10 in GaAs quantum-dot and Si:P quantum computer architectures using composite sequences with an even number of pulses.

SELECTION OF CITATIONS
SEARCH DETAIL
...