Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37763500

ABSTRACT

(1) Background: In dentistry, a reduction in surface roughness is established mostly by conventional mechanical polishing to hinder biofilm adhesion. This is time- and labor-intensive. Plasma electrolytic polishing is believed to be an effective finishing method due to the reduced treatment time and materials used for applications in dentistry. (2) Methods: Co-Cr-Mo dental alloy samples were sandblasted and prepared with either plasma electrolytic or conventional mechanical polishing. Evaluation of the polishing methods was obtained by atomic force microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. (3) Results: The sandblasted samples showed the highest surface roughness (Heraenium® Sun 991 ± 288 nm; Wironit® 1187 ± 331 nm). Our results show that with plasma electrolytic polishing, Co-Cr-Mo surfaces can be polished with a surface roughness in the nanometer range, comparable to those achieved by conventional mechanical polishing. Conventional mechanical polishing (Heraenium® Sun 134 ± 23 nm; Wironit® 114 ± 11 nm) provided lower surface roughness values compared to plasma electrolytic polishing (Heraenium® Sun 288 ± 94 nm; Wironit® 261 ± 49 nm). We anticipate our pilot study as a starting point for future studies to refine process parameters and quantitative microbiological assays. (4) Conclusions: Plasma electrolytic polishing might have a promising future for polishing dental alloys.

2.
Molecules ; 27(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35889393

ABSTRACT

Gas plasma is an approved technology that generates a plethora of reactive oxygen species, which are actively applied for chronic wound healing. Its particular antimicrobial action has spurred interest in other medical fields, such as periodontitis in dentistry. Recent work has indicated the possibility of performing gas plasma-mediated biofilm removal on teeth. Teeth frequently contain restoration materials for filling cavities, e.g., resin-based composites. However, it is unknown if such materials are altered upon gas plasma exposure. To this end, we generated a new in-house workflow for three commonly used resin-based composites following gas plasma treatment and incubated the material with human HaCaT keratinocytes in vitro. Cytotoxicity was investigated by metabolic activity analysis, flow cytometry, and quantitative high-content fluorescence imaging. The inflammatory consequences were assessed using quantitative analysis of 13 different chemokines and cytokines in the culture supernatants. Hydrogen peroxide served as the control condition. A modest but significant cytotoxic effect was observed in the metabolic activity and viability after plasma treatment for all three composites. This was only partially treatment time-dependent and the composites alone affected the cells to some extent, as evident by differential secretion profiles of VEGF, for example. Gas plasma composite modification markedly elevated the secretion of IL6, IL8, IL18, and CCL2, with the latter showing the highest correlation with treatment time (Pearson's r > 0.95). Cell culture media incubated with gas plasma-treated composite chips and added to cells thereafter could not replicate the effects, pointing to the potential that surface modifications elicited the findings. In conclusion, our data suggest that gas plasma treatment modifies composite material surfaces to a certain extent, leading to measurable but overall modest biological effects.


Subject(s)
Hydrogen Peroxide , Keratinocytes , Composite Resins/pharmacology , Humans , Hydrogen Peroxide/metabolism , Keratinocytes/metabolism , Materials Testing , Reactive Oxygen Species/metabolism , Risk Assessment
3.
Materials (Basel) ; 15(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35591421

ABSTRACT

(1) Background: The aim of this study was to systematically compare TEM sections of mineralized human enamel and dentine prepared by focused ion beam (in situ lift-out) technique and ultramicrotomy through a combination of microscopic examination methods (scanning electron microscopy and transmission electron microscopy). In contrast with published studies, we compared the TEM preparation methods using the same specimen blocks as those for the ultramicrotomy and FIB technique. (2) Methods: A further evaluation of TEM sample preparation was obtained by confocal laser scanning microscopy and atomic force microscopy. In addition, ultramicrotome- and focused ion beam-induced artefacts are illustrated. (3) Results: The FIB technique exposed a major difference between non-decalcified enamel and dentine concerning the ultrastructural morphology compared to ultramicrotome-prepared sections. We found that ultramicrotomy was useful for cutting mineralized dentine, with the possibility of mechanical artefacts, but offers limited options for the preparation of mineralized enamel. FIB preparation produced high-quality TEM sections, showing the anisotropic ultrastructural morphology in detail, with minor structural artefacts. Our results show that the solution of artificial saliva and glutardialdehyde (2.5% by volume) is a very suitable fixative for human mineralized tissue. (4) Conclusions: The protocol that we developed has strong potential for the preparation of mineralized biomaterials for TEM imaging and analysis.

4.
Cancers (Basel) ; 12(2)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979114

ABSTRACT

Recently, the potential use of cold atmospheric pressure plasma (CAP) in cancer treatment has gained increasing interest. Especially the enhanced selective killing of tumor cells compared to normal cells has prompted researchers to elucidate the molecular mechanisms for the efficacy of CAP in cancer treatment. This review summarizes the current understanding of how CAP triggers intracellular pathways that induce growth inhibition or cell death. We discuss what factors may contribute to the potential selectivity of CAP towards cancer cells compared to their non-malignant counterparts. Furthermore, the potential of CAP to trigger an immune response is briefly discussed. Finally, this overview demonstrates how these concepts bear first fruits in clinical applications applying CAP treatment in head and neck squamous cell cancer as well as actinic keratosis. Although significant progress towards understanding the underlying mechanisms regarding the efficacy of CAP in cancer treatment has been made, much still needs to be done with respect to different treatment conditions and comparison of malignant and non-malignant cells of the same cell type and same donor. Furthermore, clinical pilot studies and the assessment of systemic effects will be of tremendous importance towards bringing this innovative technology into clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...