Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 13641, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35948615

ABSTRACT

Mycoses are a global problem that affects humans and animals. In the present study, the entomopathogenic soil fungus Conidiobolus coronatus (Entomophthorales), infecting in tropics also humans, sheep and horses, was cultivated with the addition of insect cuticular compounds (CCs) previously detected in the cuticle of C. coronatus-resistant fly species (C10-C30 fatty alcohols, butyl oleate, butyl stearate, glycerol oleate, squalene, tocopherol acetate). Our findings indicate that CCs have diversified and complex effects on the growth and sporulation of C. coronatus and its ability to infect the larvae of Galleria mellonella (Lepidoptera). The CCs affected protein content and cuticle-degrading enzymes (CDEs) activity in the conidia. Some CCs inhibited fungal growth (0.1% C10), decreased sporulation (C12, C16, C24, C28, C30, butyl stearate, squalene), virulence (C12, C14, butyl oleate, butyl stearate) and protein content (C18). They also reduced conidial CDE activity: elastase (C24, butyl oleate, butyl stearate, squalene, tocopherol acetate), chitobiosidase (C12, C14, C20) and lipase (C12, C18, C26, squalene, tocopherol acetate). Several CCs enhanced sporulation (C14, C18, C22, C26, C30), virulence (C18, C26, squalene), conidial protein content (C16, C24, C30, squalene) and CDE activity: elastase (C10, C16, C18), NAGase (C16, C20), chitobiosidase (C16) and lipase (C10, C14, C16, C20, butyl oleate). Our findings indicate that C. coronatus colonies grown on media supplemented with CCs employ various compensation strategies: colonies grown with C16 alcohol demonstrated reduced sporulation but greater conidial protein accumulation and increased elastase, NAGase, chitobiosidase and lipase activity, thus preserving high virulence. Also, colonies supplemented with C18 alcohol demonstrated high virulence and enhanced sporulation and elastase activity but slightly decreased conidial protein content. CCs that inhibit the activity of lipases and proteases show promise in the fight against conidiobolomycosis.


Subject(s)
Moths , Zygomycosis , Acetylglucosaminidase/metabolism , Animals , Conidiobolus , Fatty Acids/metabolism , Horses , Humans , Insecta/metabolism , Lipase/metabolism , Oleic Acid/metabolism , Oleic Acid/pharmacology , Pancreatic Elastase/metabolism , Sheep , Spores, Fungal/metabolism , Squalene/metabolism , alpha-Tocopherol/metabolism
2.
PLoS One ; 15(7): e0235785, 2020.
Article in English | MEDLINE | ID: mdl-32645074

ABSTRACT

The interactions between entomopathogenic fungi and insects serve a classic example of a co-evolutionary arms race between pathogens and their target host. The cuticle, site of the first contact between insects and entomopathogenic fungus, is an important defensive barrier against pathogens. It is covered by a layer of lipids that appears to play a key role in these processes and cuticular free fatty acid (FFA) profiles are consider as a determinant of susceptibility, or resistance, to fungal infections. These profiles are species-specific. The cockroaches Blattella germanica (Blattodea: Blattidae) and Blatta orientalis (Blattodea: Ectobiidae) are unsusceptible to the soil fungus Conidiobolus coronatus (Entomophthorales: Ancylistaceae) infection, therefore we studied the profiles of FFAs in order to understand the defensive capabilities of the cockroaches. The fungus was cultivated for three weeks in minimal medium. Cell-free filtrate was obtained, assayed for elastase, N-acetylglucosaminidase, chitobiosidase and lipase activity, and then used for in vitro hydrolysis of the cuticle from wings and thoraces of adults and oothecae. The amounts of amino acids, N-glucosamine and FFAs released from the hydrolysed cuticle samples were measured after eight hours of incubation. The FFA profiles of the cuticle of adults, and the wings, thoraces and oothecae of both species were established using GC-MS and the results were correlated with the effectiveness of fungal proteases, chitinases and lipases in the hydrolyzation of cuticle samples. Positive correlations would suggest the existence of compounds used by the fungus as nutrients, whereas negative correlations may indicate that these compounds could be engaged in insect defence.


Subject(s)
Cockroaches/microbiology , Conidiobolus/physiology , Fatty Acids/metabolism , Fungal Proteins/metabolism , Hydrolases/metabolism , Animals , Cockroaches/metabolism , Female , Host-Pathogen Interactions , Male
3.
PLoS One ; 13(3): e0192715, 2018.
Article in English | MEDLINE | ID: mdl-29518079

ABSTRACT

The entomopathogenic fungus Conidiobolus coronatus produces enzymes that may hydrolyze the cuticle of Galleria mellonella. Of these enzymes, elastase activity was the highest: this figure being 24 times higher than NAGase activity 553 times higher than chitinase activity and 1844 times higher than lipase activity. The present work examines the differences in the hydrolysis of cuticles taken from larvae, pupae and adults (thorax and wings), by C. coronatus enzymes. The cuticles of the larvae and adult thorax were the most susceptible to digestion by proteases and lipases. Moreover, the maximum concentration of free N-glucosamine was in the hydrolysis of G. mellonella thorax. These differences in the digestion of the various types of cuticle may result from differences in their composition. GC-MS analysis of the cuticular fatty acids isolated from pupae of G. mellonella confirmed the presence of C 8:0, C 9:0, C 12:0, C 14:0, C 15:0, C 16:1, C 16:0, C 17:0, C 18:1, C 18:0, with C 16:0 and C 18:0 being present in the highest concentrations. Additional fatty acids were found in extracts from G. mellonella imagines: C 10:0, C 13:0, C 20:0 and C 20:1, with a considerable dominance of C 16:0 and C 18:1. In larvae, C 16:0 and C 18:1 predominated. Statistically significant differences in concentration (p≤0.05) were found between the larvae, pupae and imago for each fatty acid. The qualitative and quantitative differences in the fatty acid composition of G. mellonella cuticle occurring throughout normal development might be responsible for the varied efficiency of fungal enzymes in degrading larval, pupal and adult cuticles.


Subject(s)
Conidiobolus/enzymology , Fatty Acids/metabolism , Moths/metabolism , Animals , Conidiobolus/physiology , Fungal Proteins/metabolism , Host-Pathogen Interactions , Larva/metabolism , Larva/microbiology , Lipase/metabolism , Moths/microbiology , Pancreatic Elastase/metabolism , Peptide Hydrolases/metabolism , Pupa/metabolism , Pupa/microbiology
4.
Biomed Chromatogr ; 32(2)2018 Feb.
Article in English | MEDLINE | ID: mdl-28722154

ABSTRACT

A constant problem in veterinary medicine, human healthcare, agriculture, forestry and horticulture is the large number of pests, and the lack of effective methods to combat them which cause no harm to the rest of the environment. It is recommended and desired to reduce the use of chemicals and increase the use of agents based on knowledge acquired in the fields of biology, chemistry and agrochemicals. To learn the defense mechanisms of insects we should consider not only the site of their physiological ability to protect against external factors (cuticle), but also the possibility of chemical protection, formed by all compounds on the surface and in the body of insects. In this study, a procedure was developed to determine the esters of carboxylic acids in insect lipids. Headspace solid-phase microextraction was followed by gas chromatography coupled with gas spectrometry. First, the best conditions were selected for the analysis to obtain the best chromatographic separation. An RTx-5 column was used for this purpose. Polydimethylsiloxane/divinylbenzene (PDMS/DVB) and polyacrylate fibers were used to isolate acid esters. PDMS/DVB fiber achieved the best conditions for the extraction; the extraction time was 50 min, the extraction temperature was 105°C and the desorption time was 10 min at 230°C. These solid-phase microextraction conditions were used to analyze volatile compounds extracted from insects belonging to the Dermestidae family.


Subject(s)
Carboxylic Acids/analysis , Coleoptera/chemistry , Esters/analysis , Gas Chromatography-Mass Spectrometry/methods , Lipids/analysis , Solid Phase Microextraction/methods , Animals , Carboxylic Acids/chemistry , Esters/chemistry , Female , Limit of Detection , Linear Models , Lipids/chemistry , Male , Reproducibility of Results
5.
Insect Sci ; 23(1): 94-104, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25641824

ABSTRACT

The results of our research on the cuticular and internal lipids of Blattella germanica males provide new information on variation in the composition of the cuticular and internal lipids of B. germanica males after exposure to the presence of the insecticide. gas chromatography and gas chromatography-mass spectrometry analyses were used to identify and quantify the cuticular and internal lipid composition in males and males exposed to insecticide. There were significantly more acids having an even number of carbon atoms in the molecule, and these were also generally in higher concentrations. The following acids were in a higher concentration: C16:0 and C18:1, C18:2, C18:0. In both males and males exposed to insecticide, 24 fatty acids ranging from C6 to C22 were determined. However, there was a significantly higher content of fatty acids in the surface lipids of B. germanica males after exposure to insecticide. Our results indicate a higher content of n-alkanes, sterols, particularly cholesterol, fatty acids, and fatty acid methyl esters in the B. germanica surface after exposure to chlorpyrifos than in males that were not exposed.


Subject(s)
Blattellidae/chemistry , Blattellidae/drug effects , Chlorpyrifos/pharmacology , Insecticides/pharmacology , Lipids/chemistry , Acclimatization/drug effects , Alcohols/chemistry , Alkanes/chemistry , Animals , Blattellidae/anatomy & histology , Blattellidae/physiology , Fatty Acids/chemistry , Male , Sterols/chemistry
6.
Chem Biodivers ; 11(5): 733-48, 2014 May.
Article in English | MEDLINE | ID: mdl-24827683

ABSTRACT

The composition of the cuticular and internal lipids of larvae and pupae of Lucilia sericata was studied using chromatographic techniques. The lipids from both stages of L. sericata had similar free fatty acid (FFA) profiles and also contained alcohols and cholesterol. The range of the number of C-atoms detected for these classes of compounds was to some extent similar in larvae and pupae, but the relative amounts of each class differed between stages. Saturated as well as unsaturated FFAs with even and odd numbered C-atom chains were present in both cuticular and internal lipids. The alcohol fractions of L. sericata were represented by free, straight-chain primary alcohols containing an even number of C-atoms. The lipid composition of male and female L. sericata adults and the hydrocarbon composition of all stages of L. sericata had previously been analyzed. To have a full overview of the lipid composition and to identify similarities or dissimilarities between the individual lipid fractions in this insect species, two-way hierarchical cluster analysis (HCA) was performed using also the data from these previous publications. The content of FFA 18 : 1 (n-9) was noticed to be very high in the cuticular fractions of larvae and pupae as well as in all internal fractions (male, female, larvae, and pupae) and low in the cuticular fractions of male and female imago. The contents of FFAs 16 : 0 and 16 : 1 (n-9), cholesterol, and the n-alkanes n-C31 , n-C29 , n-C27 , n-C25 , and n-C23 varied between particular fractions, whereas the amounts of other compounds were similar in all fractions.


Subject(s)
Diptera/chemistry , Lipids/analysis , Animals , Cholesterol/analysis , Cluster Analysis , Diptera/growth & development , Fatty Acids/analysis , Fatty Alcohols/analysis , Female , Larva/chemistry , Male , Pupa/chemistry
7.
Chem Biodivers ; 10(8): 1521-30, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23939800

ABSTRACT

The glycerol concentration and the composition of cuticular and internal sterols in three medically and forensically important fly species, viz., Musca domestica, Sarcophaga carnaria, and Calliphora vicina, were analyzed. The cuticular and internal lipid extracts were separated by HPLC-LLSD, after which the sterol fraction was characterized by GC/MS in total ion current (TIC) mode. The cuticular lipids of M. domestica larvae contained seven sterols, while in pupae and females, six sterols were identified. Five sterols were found in the cuticular lipids of M. domestica males. The internal lipids of M. domestica larvae and pupae contained six and seven sterols, respectively, while those of male and female flies contained only five sterols. Sitosterol, cholesterol, and campesterol were the dominant sterols in M. domestica, while campestanol, stigmasterol, sitostanol, and fucosterol were identified in low concentrations or in traces. In contrast, cuticular and internal lipids of S. carnaria and C. vicina contained only cholesterol. Glycerol was identified in all stages of M. domestica, S. carnaria, and C. vicina. For all the three examined fly species, the present study clearly showed species-specific developmental changes in the composition of cuticular and internal sterols as well as in the glycerol concentration.


Subject(s)
Animal Shells/chemistry , Diptera/physiology , Glycerol/analysis , Lipids/analysis , Sterols/analysis , Animals , Cholesterol/analysis , Chromatography, Gas , Diptera/chemistry , Female , Larva/chemistry , Male , Pupa/chemistry , Sterols/chemistry
8.
J Insect Physiol ; 59(4): 416-29, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23419415

ABSTRACT

The cuticular and internal lipid composition in Calliphora vomitoria larvae, pupae, and male and female adults was studied. The free fatty acid (FA) compositions of the lipids were chemically characterized using gas chromatography (GC) and gas chromatography-electron impact mass spectrometry (GC-MS). Analyses of cuticular extracts from larvae, pupae, and male and female adults revealed that the carbon numbers of the acids ranged from C7:0 to C22:0, from C8:0 to C24:0, from C7:0 to C24:0 and from C7:0 to C22:0 respectively. The internal lipids of C. vomitoria larvae, pupae, male and female adults contained FAs ranging from C8:0 to C20:0, from C9:0 to C22:0, from C8:0 to C24:0 and from C9:0 to C22:0 respectively. Nine FAs with odd-numbered carbon chains from C7:0 to C21:0 were identified in the cuticular lipids of the larvae. The internal lipids of C. vomitoria larvae contained 8 odd-numbered FAs ranging from C9:0 to C19:0. Eight odd-numbered FAs from C9:0 to C21:0 were identified in the cuticular and internal lipids of pupae, while nine such FAs were found in the cuticular lipids of male and female adults. The internal lipids of adult males and females respectively contained nine and seven odd-numbered FAs, while both larvae and pupae contained eight such compounds. Eight unsaturated FAs were identified in the cuticular lipids of larvae, adult males and females and also in the internal lipids of females. Seven unsaturated FAs were identified in the cuticular lipids of pupae. The internal lipids of larvae, pupae and males contained 10, 11 and 12 unsaturated FAs respectively. Developmental changes were found both in the amounts of extracted cuticular and internal FAs and in their profiles. Four cuticular FAs (C7:0, C9:0, C10:0 and C15:1), identified as being male-specific, were either absent in the female cuticle or present there only in trace amounts. Cuticular and internal extracts obtained from larvae, pupae, adult males and females were tested for their potential antimicrobial activity. The minimal inhibitory concentrations of extracts against reference strains of bacteria and fungi were determined. Antimicrobial activity was the strongest against Gram-positive bacteria; Gram-negative bacteria, on the other hand, turned out to be resistant to all the lipids tested. Overall, the activities of the internal lipids were stronger. All the lipid extracts were equally effective against all the fungal strains examined. In contrast, crude extracts containing both cuticular and internal lipids displayed no antifungal activity against the entomopathogenic fungus Conidiobolus coronatus, which efficiently killed adult flies, but not larvae or pupae.


Subject(s)
Anti-Bacterial Agents/metabolism , Antifungal Agents/metabolism , Conidiobolus/drug effects , Diptera/metabolism , Diptera/microbiology , Fatty Acids, Nonesterified/metabolism , Animals , Conidiobolus/growth & development , Diptera/growth & development , Female , Fungi/drug effects , Gas Chromatography-Mass Spectrometry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Larva/metabolism , Larva/microbiology , Male , Microbial Sensitivity Tests , Pupa/metabolism , Pupa/microbiology
9.
J Exp Biol ; 215(Pt 19): 3419-28, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22693023

ABSTRACT

Information on the stimulatory and inhibitory effects of cuticular alcohols on growth and virulence of insecticidal fungi is unavailable. Therefore, we set out to describe the content of cuticular and internal alcohols in the body of housefly larvae, pupae, males and females. The total cuticular alcohols in larvae, males and females of Musca domestica were detected in comparable amounts (4.59, 3.95 and 4.03 µg g(-1) insect body, respectively), but occurred in smaller quantities in pupae (2.16 µg g(-1)). The major free alcohol in M. domestica larvae was C(12:0) (70.4%). Internal alcohols of M. domestica larvae were not found. Among cuticular pupae alcohols, C(12:0) (31.0%) was the most abundant. In the internal lipids of pupae, only five alcohols were identified in trace amounts. The most abundant alcohol in males was C(24:0) (57.5%). The percentage content of cuticular C(24:0) in males and females (57.5 and 36.5%, respectively) was significantly higher than that of cuticular lipids in larvae and pupae (0.9 and 5.6%, respectively). Only two alcohols were present in the internal lipids of males in trace amounts (C(18:0) and C(20:0)). The most abundant cuticular alcohols in females were C(24:0) (36.5%) and C(12:0) (26.8%); only two alcohols (C(18:0) and C(20:0)) were detected in comparable amounts in internal lipids (3.61±0.32 and 5.01±0.42 µg g(-1), respectively). For isolated alcohols, antimicrobial activity against 10 reference strains of bacteria and fungi was determined. Individual alcohols showed approximately equal activity against fungal strains. C(14:0) was effective against gram-positive bacteria, whereas gram-negative bacteria were resistant to all tested alcohols. Mixtures of alcohols found in cuticular lipids of larvae, pupae, males and females of M. domestica generally presented higher antimicrobial activity than individual alcohols. In contrast, crude extracts containing both cuticular and internal lipids showed no antifungal activity against the entomopathogenic fungus Conidiobolus coronatus, which efficiently kills adult house flies.


Subject(s)
Alcohols/pharmacology , Anti-Infective Agents/pharmacology , Houseflies/drug effects , Alcohols/chemistry , Animals , Bacteria/drug effects , Disease Susceptibility , Female , Fungi/drug effects , Houseflies/microbiology , Larva/chemistry , Larva/drug effects , Lipids/chemistry , Male , Methylene Chloride/chemistry , Microbial Sensitivity Tests , Mycoses/pathology , Petroleum , Pupa/chemistry , Pupa/drug effects , Tissue Extracts
10.
Lipids ; 47(6): 613-22, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22415221

ABSTRACT

GC, GC-MS, and HPLC-LLSD analyses were used to identify and quantify cuticular and internal lipids in males and females of the blow-fly (Lucilia sericata). Sixteen free fatty acids, seven alcohols and cholesterol were identified and quantitatively determined in the cuticular lipids of L. sericata. Cuticular fatty acids ranged from C(6) to C(20) and included unsaturated entities such as 16:1n-9, 18:1n-9, 20:4n-3 and 20:5n-3. Cuticular alcohols (only saturated and even-numbered) ranged from C(12) to C(20) in males and C(10) to C(22) in females. Only one sterol was found in the cuticular lipids of both males and females. 23 free fatty acids, five alcohols and cholesterol were identified in the internal lipids. Internal fatty acids were present in large amounts-7.4 mg/g (female) and 10.1 mg/g (male). Only traces of internal alcohols (from C(14) to C(26) in males, from C(14) to C(22) in females) were found in L. sericata. Large amounts of internal cholesterol were identified in L. sericata males and females (0.49 and 0.97 mg/g of the insect body, respectively).


Subject(s)
Alcohols/isolation & purification , Diptera/chemistry , Fatty Acids, Nonesterified/isolation & purification , Alcohols/chemistry , Animals , Biological Control Agents , Cholesterol/chemistry , Cholesterol/isolation & purification , Conidiobolus/physiology , Diptera/microbiology , Disease Resistance , Fatty Acids, Nonesterified/chemistry , Female , Host-Pathogen Interactions , Male
11.
Postepy Biochem ; 57(1): 115-21, 2011.
Article in Polish | MEDLINE | ID: mdl-21735827

ABSTRACT

Entomopathogenic fungi have a great potential in biological control of insect pest population. Fungal pathogens are promising source of insecticides and notable alterative to chemical pesticides. These fungi possess a unique mechanism of insects paralysis. As natural enemies of insects they attack direct host cuticle via a combination of mechanical pressure and cuticle-degrading enzymes. Entomopathogenic fungi produce several proteo-, chitino- and lipolytic enzymes, which are accepted as key factors in insect mycosis. The role of extracellular enzymes in pathogenesis is still not well understood. Profound understanding the mechanisms of insect paralysis by entomopathogenic fungi will help in the production of safer for environment and more efficiency mycoinsecticides.


Subject(s)
Fungi/enzymology , Insecticides/pharmacology , Pest Control, Biological
12.
Wiad Parazytol ; 56(1): 83-5, 2010.
Article in Polish | MEDLINE | ID: mdl-20450015

ABSTRACT

The largest problem in limitation of insect pest population is increasing resistance of them to chemical pesticides. Alternative are entomopathogens, which regulate frequency of insect pests. Among them decisive role play entomopathogenic fungi, which possess the ability to active penetration through cuticle by mechanical pressure of invasive hypha and production of proteo-, chitino- (egzo- and endochitinases) as well as lipolytic enzymes, which provide nutrients for subsequent development of fungus. Entomopathogenic soil fungus Conidiobolus coronatus (Entomophtorales) is saprophyte fungus, which demonstrates a high efficiency in the paralysis of varied insects. Although leading investigations over mechanism of insect paralysis, we still do not know, what role fungal enzymes play in insect cuticle penetration. The main aim of research was establishment of optimal conditions for elastase, N-acetylglucosaminidase (NAGase), chitobiosidase as well as lipase. Optimal reaction parameters were determined: volume of reaction mixture, volume of homogenate, working pH and the substrate concentration. Having on aim a possible use of C. coronatus in pest control, two ranges of temperatures were chosen: 20 degrees C--optimal temperature for the fungus growing and 30 degrees C--optimal temperature for the cultivation of the great wax moth larvae, Galleria mellonella, on which examinations were performed. Also kinetic constants Km and Vmax were determined. Activity of elastase and N-acetylglucosaminidase of C. coronatus was measured spectrophotometrically at 410 nm (towards N-Succinyl-Ala-Ala-Pro-Leu-p-Nitroanilide) and 405 nm (towards 4-Nitrophenyl-N-acetyl-beta-D-glucosaminide), respectively. The following optimal conditions of elastase activity were established: the volume of reaction mixture 0.5 ml, volume of homogenate 1 microl, temperature 30 degrees C, pH 8, substrate concentration 40 mM. Optimal conditions of NAGase assay: the volume of reaction mixture 0.5 ml, dose of homogenate 12.5 microl, temperature 30 degrees C, pH neutral and 6 mM substrate concentration. The activities of chitobiosidase and lipase were measured spectrofluorometrically (Ex=360 nm, Em=450 nm) towards 4-Methylumbelliferyl beta-D-N-N'-diacetylchitobioside and 4-Methylumbelliferyl oleate, respectively. Chitobiosidase showed the highest activity in dose of 30 microl in 1 ml volume of reaction mixture, at the temperature of 30 degrees C, pH 7 and substrate concentration equal to 2 mM. Lipase showed the highest catalytic activity in 1 ml volume of reaction mixture, in 30 degrees C but 50 microl of homogenate, pH 10 and 10 mM substrate concentration were needed. Higher activity investigated enzymes in 30 degrees C than 20 degrees C indicated that they can take part in pathogenesis. It was suggested that as first in perforation of coats of insects body elastase and lipase take part. Indicated of it, large thermoresistance of both enzymes (only 10.5% decrease of elastase activity at 20 degrees C and 9.4% decrease of lipase activity in comparison with maximal activity at 30 degrees C), alkalophilicity of both proteins (elastase shows the alkaline optimal pH equal to 8 at pH 9 preserves 97% activity, and at pH 10 94% activity, respectively while lipase prefers the pH 10 and at pH 8 and pH 9 enzyme keeps 57 and 60% activity, respectively) as well as lack of repression by suitable substrates. Sigmoid character of curve concerning pH influence on the activity of both enzymes, also indicates similarity between elastase and lipase. On minor part of NAGase and chitobiosidase of fungus C. coronatus in perforation of coats of host body showed high sensibility of both enzymes on hydrogen ions concentration: both enzymes prefer neutral pH, in pH 6 and 8 lose over 35% activity but subjection to substrate repression and 3-4-fold growth of activity followed only in 30 degrees C. In the course of work it was found, that rich medium (LB) stimulates growth of mycelium and production of fungal lipases. So far nobody managed to isolate chitinolytic or lipolytic enzymes from C. coronatus homogenate. The majority of fungal enzymes were isolated from post incubation filtrates. In the literature of the subject lack of data about C. coronatus NAGase, therefore in examinations also the trial of isolation NAGase from C. coronatus homogenate was undertaken. Activity of NAGase showed only first fraction, which did not separate with none of used columns. Disappointing results of purification on cation exchanger CM, weak anion exchanger DEAE, and strong anion exchanger Q were obtained as well as after fractionation tests with the use of Microcon microcolumns. In aim of NAGase molecular mass estimation, two zymograms were made with Triton X-100 and casein and with the use of fluorescent substrate 4-Methylumbelliferyl N-acetyl-beta-D-glucosaminide. Molecular mass of NAGase from C. coronatus was established on ca. 60 kDa. This is the first report describing molecular weight of NAGase from C. coronatus. Examined NAGase has different properties than known NAGases from other entomopathogenic fungi. Although its molecular weight is equal to the Metarhizium anisopliae NAGase, optimal pH for both NAGases are different: neutral in the case of C. coronatus NAGase versus acidic in the case of M. anisopliae NAGase. Knowledge of molecular mass of the C. coronatus NAGase should allow to find a new method of this enzyme isolation from C. coronatus homogenate. Thanks to developed methods of assaying activities of elastase, NAGase, chitobiosidase and lipase, real becomes the understanding of mechanism of insects paralysis through C. coronatus fungus.


Subject(s)
Conidiobolus/enzymology , Insecticides/chemistry , Pest Control, Biological , Acetylglucosaminidase/chemistry , Animals , Hexosaminidases/chemistry , Hydrogen-Ion Concentration , Insect Control , Lipase/chemistry , Pancreatic Elastase/chemistry , Substrate Specificity
13.
Exp Parasitol ; 125(4): 400-8, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20385129

ABSTRACT

Eighteen fatty acids identified in the cuticle of three insect species representing differing susceptibilities to C. coronatus infection, were tested for effects on the in vitro growth and pathogenicity of the parasitic fungus. At all applied concentrations (0.1-0.0001% w/v) growth was inhibited by C(16:0), C(16:1), C(18:0), C(18:1), C(18:2), C(18:3), C(20:0) and C(20:1). At high concentrations spore germination was inhibited by C(7:0), C(8:0), C(9:0), C(10:0), C(12:0), C(18:2) and C(18:3) and hyphal growth was merely retarded by C(5:0), C(6:0), C(6:2), C(14:0), C(16:0), C(16:1), C(18:0,) C(18:1), C(20:0) and C(20:1). The presence of C(15:0) at the 0.1% concentration stimulated growth of C. coronatus. Sporulation was inhibited by all concentrations of C(16:0) and C(18-20) fatty acids. Low concentrations of C(5:0), C(6:0), C(6:2) and C(7:0) enhanced sporulation. Fatty acids C(5-12) as well as C(18:3), C(20:0) and C(20:1) decreased the ability of fungal colonies to infect G. mellonella while C(16:1) elevated it thus suggesting that C(16:1) may stimulate production of enzymes involved in the host invasion. Toxicity of metabolites released into incubation medium decreased with varying degrees in the presence of C(6:0), C(6:2,) C(7:0), C(9:0), C(12:0), C(16:1), C(18:2), C(18:3), C(20:0) and C(20:1); other fatty acids had no effect. Further work is needed to analyse the effects of exogenous fatty acids on the C. coronatus enzymes implicated in fungal pathogenicity as well as on the production of insecticidal metabolites.


Subject(s)
Conidiobolus/growth & development , Conidiobolus/pathogenicity , Fatty Acids/pharmacology , Moths/microbiology , Analysis of Variance , Animals , Biomass , Conidiobolus/drug effects , Conidiobolus/physiology , Fatty Acids/chemistry , Fungal Proteins/metabolism , Moths/chemistry , Mycelium/drug effects , Mycelium/growth & development , Spores, Fungal/drug effects , Spores, Fungal/physiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...