Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 14(16): 1560-1572, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31283109

ABSTRACT

UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a Zn2+ deacetylase that is essential for the survival of most pathogenic Gram-negative bacteria. ACHN-975 (N-((S)-3-amino-1-(hydroxyamino)-3-methyl-1-oxobutan-2-yl)-4-(((1R,2R)-2-(hydroxymethyl)cyclopropyl)buta-1,3-diyn-1-yl)benzamide) was the first LpxC inhibitor to reach human clinical testing and was discovered to have a dose-limiting cardiovascular toxicity of transient hypotension without compensatory tachycardia. Herein we report the effort beyond ACHN-975 to discover LpxC inhibitors optimized for enzyme potency, antibacterial activity, pharmacokinetics, and cardiovascular safety. Based on its overall profile, compound 26 (LPXC-516, (S)-N-(2-(hydroxyamino)-1-(3-methoxy-1,1-dioxidothietan-3-yl)-2-oxoethyl)-4-(6-hydroxyhexa-1,3-diyn-1-yl)benzamide) was chosen for further development. A phosphate prodrug of 26 was developed that provided a solubility of >30 mg mL-1 for parenteral administration and conversion into the active drug with a t1/2 of approximately two minutes. Unexpectedly, and despite our optimization efforts, the prodrug of 26 still possesses a therapeutic window insufficient to support further clinical development.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Diynes/pharmacology , Enzyme Inhibitors/pharmacology , Heart/drug effects , Hydroxamic Acids/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/toxicity , Bacterial Proteins/antagonists & inhibitors , Cardiotoxicity , Diynes/chemical synthesis , Diynes/pharmacokinetics , Diynes/toxicity , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/toxicity , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacokinetics , Hydroxamic Acids/toxicity , Male , Molecular Structure , Prodrugs/chemical synthesis , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Prodrugs/toxicity , Pseudomonas aeruginosa/drug effects , Rats, Sprague-Dawley , Structure-Activity Relationship
2.
J Med Chem ; 62(16): 7489-7505, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31306011

ABSTRACT

A major challenge for new antibiotic discovery is predicting the physicochemical properties that enable small molecules to permeate Gram-negative bacterial membranes. We have applied physicochemical lessons from previous work to redesign and improve the antibacterial potency of pyridopyrimidine inhibitors of biotin carboxylase (BC) by up to 64-fold and 16-fold against Escherichia coli and Pseudomonas aeruginosa, respectively. Antibacterial and enzyme potency assessments in the presence of an outer membrane-permeabilizing agent or in efflux-compromised strains indicate that penetration and efflux properties of many redesigned BC inhibitors could be improved to various extents. Spontaneous resistance to the improved pyridopyrimidine inhibitors in P. aeruginosa occurs at very low frequencies between 10-8 and 10-9. However, resistant isolates had alarmingly high minimum inhibitory concentration shifts (16- to >128-fold) compared to the parent strain. Whole-genome sequencing of resistant isolates revealed that either BC target mutations or efflux pump overexpression can lead to the development of high-level resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Carbon-Nitrogen Ligases/antagonists & inhibitors , Escherichia coli/drug effects , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bacterial Outer Membrane/drug effects , Bacterial Outer Membrane/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon-Nitrogen Ligases/genetics , Carbon-Nitrogen Ligases/metabolism , Chemical Phenomena , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Microbial Sensitivity Tests , Models, Chemical , Molecular Structure , Mutation , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics
3.
J Pharm Biomed Anal ; 111: 126-30, 2015.
Article in English | MEDLINE | ID: mdl-25880243

ABSTRACT

Amino carbamate adduct formation from the amino group of an aminoglycoside and carbon dioxide has been postulated as a mechanism for reducing nephrotoxicity in the aminoglycoside class compounds. In this study, sisomicin was used as a model compound for amino carbamate analysis. A high pH based reversed-phase high performance liquid chromatography (RP-HPLC) method is used to separate the amino carbamate from sisomicin. The carbamate is stable as the breakdown is inhibited at high pH and any reactive carbon dioxide is removed as the carbonate. The amino carbamate was quantified and the molar fraction of amine as the carbamate of sisomicin was obtained from the HPLC peak areas. The equilibrium constant of carbamate formation, Kc, was determined to be 3.3 × 10(-6) and it was used to predict the fraction of carbamate over the pH range in a typical biological systems. Based on these results, the fraction of amino carbamate at physiological pH values is less than 13%, and the postulated mechanism for nephrotoxicity protection is not valid. The same methodology is applicable for other aminoglycosides.


Subject(s)
Carbamates/chemistry , Sisomicin/chemistry , Aminoglycosides/chemistry , Carbon Dioxide/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Hydrogen-Ion Concentration
4.
J Pharm Biomed Anal ; 66: 75-84, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22459505

ABSTRACT

A reversed-phase high performance liquid chromatographic (RP-HPLC) method has been developed for the aminoglycoside (AG) plazomicin (ACHN-490). This method employed a high pH mobile phase (pH>11) with a gradient of 0.25 M ammonium hydroxide in water and acetonitrile, an XBridge C(18) column and UV detection at 210 nm. Although the molar UV absorption of plazomicin is weak, the high pH conditions of this method allow for higher loadings, which compensates for the inherent low UV sensitivity. Under these high pH conditions, impurities and degradants were base line separated from plazomicin. The mobile phases used for this method allowed for on-line mass detection for the impurities and degradants. The RP-HPLC method has been validated in terms of specificity, linearity and range, accuracy, and precision. The analytical method met specificity requirements of a homogenous peak with no interferences from the blank or from the known impurities in plazomicin. The linearity of the method for the plazomicin impurity determination was excellent, with a coefficient of determination (r(2)) of 0.9993, over the freebase (FB) concentration range of 0.0025-3.0 mg/mL. The method is capable of detecting impurities down to 0.1% of the peak area of plazomicin. A single point standard at a concentration of 1.0 mg/mL FB was validated over the range of 50-150% for quantitation of the freebase content (the assay) in bulk drug substance. The mean recoveries of FB are in the range 98.6-102.0% with a mean RSD (relative standard deviation) <1.0%. The study also examined the method precision for purity, impurities and the assay with two instruments on two different days. The method showed adequate accuracy and precision for the intended use. This high pH method was successfully used to determine the impurity and measure the drug content in the final plazomicin drug substance. In addition, the method with an on-line mass spectrometry detector has been used to characterize the structures of the impurities in plazomicin.


Subject(s)
Anti-Bacterial Agents/analysis , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Sisomicin/analogs & derivatives , Anti-Bacterial Agents/chemistry , Drug Contamination , Hydrogen-Ion Concentration , Limit of Detection , Reproducibility of Results , Sensitivity and Specificity , Sisomicin/analysis , Sisomicin/chemistry
5.
Antimicrob Agents Chemother ; 54(11): 4636-42, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20805391

ABSTRACT

ACHN-490 is a neoglycoside, or "next-generation" aminoglycoside (AG), that has been identified as a potentially useful agent to combat drug-resistant bacteria emerging in hospitals and health care facilities around the world. A focused medicinal chemistry campaign produced a collection of over 400 sisomicin analogs from which ACHN-490 was selected. We tested ACHN-490 against two panels of Gram-negative and Gram-positive pathogens, many of which harbored AG resistance mechanisms. Unlike legacy AGs, ACHN-490 was active against strains expressing known AG-modifying enzymes, including the three most common such enzymes found in Enterobacteriaceae. ACHN-490 inhibited the growth of AG-resistant Enterobacteriaceae (MIC(90), ≤4 µg/ml), with the exception of Proteus mirabilis and indole-positive Proteae (MIC(90), 8 µg/ml and 16 µg/ml, respectively). ACHN-490 was more active alone in vitro against Pseudomonas aeruginosa and Acinetobacter baumannii isolates with AG-modifying enzymes than against those with altered permeability/efflux. The MIC(90) of ACHN-490 against AG-resistant staphylococci was 2 µg/ml. Due to its promising in vitro and in vivo profiles, ACHN-490 has been advanced into clinical development as a new antibacterial agent.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Sisomicin/analogs & derivatives , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/chemistry , Enterobacteriaceae/drug effects , Microbial Sensitivity Tests , Molecular Structure , Proteus mirabilis/drug effects , Pseudomonas aeruginosa/drug effects , Sisomicin/chemical synthesis , Sisomicin/chemistry , Sisomicin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...