Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Dis Markers ; 2017: 3276806, 2017.
Article in English | MEDLINE | ID: mdl-28659655

ABSTRACT

Cancer stem cells (CSC) play an important role in pancreatic carcinogenesis and prognosis. The study aimed at examining the expression of CD24, CD44, and CD133 in human PDAC and CP in order to evaluate its clinicopathological correlations and the clinical significance. Surgical specimens from 23 patients with PDAC and 15 patients with chronic pancreatitis after pancreatic resection were stained with CD24, CD44, and CD133 antibodies. The intensity of staining was scored from 0 (negative) to 3 (strongly positive). Results. Mean CD24 staining score in PDAC was 1.38 ± 0.76 and was significantly higher than that in CP: 0.70 ± 0.53 (p < 0.01); CD44 score in PDAC was 2.23 ± 0.42 and was significantly higher than that in CP: 1.87 ± 0.55 (p < 0.05); CD133 score 0.93 ± 0.58 was not different from CP: 0.71 ± 0.43 (p > 0.05). CD44 immunoreactivity was significantly higher (p < 0.05) in pT1 and pT2 patients together as regards pT3: 2.45 ± 0.37 versus 2.06 ± 0.38 as well as in N0 patients compared to N1 patients: 2.5 ± 0.38 versus 2.04 ± 0.34. Conclusions. CD24 and CD44 are upregulated in human pancreatic cancer compared to chronic pancreatitis. CD44 immunoreactivity decreases with the tumor advancement and may represent the negative PDAC prognostic factor. Each CSC marker was differently related to PDAC advancement. CD133 may lack clinical significance in PDAC.


Subject(s)
AC133 Antigen/genetics , Biomarkers, Tumor/genetics , CD24 Antigen/genetics , Carcinoma, Pancreatic Ductal/diagnosis , Hyaluronan Receptors/genetics , Neoplastic Stem Cells/metabolism , Pancreatitis, Chronic/diagnosis , AC133 Antigen/metabolism , Adult , Aged , Biomarkers, Tumor/metabolism , CD24 Antigen/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/surgery , Female , Humans , Hyaluronan Receptors/metabolism , Immunohistochemistry , Male , Middle Aged , Neoplastic Stem Cells/pathology , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/mortality , Pancreatitis, Chronic/surgery , Prognosis , Survival Analysis
3.
Phys Chem Chem Phys ; 13(16): 7330-9, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21390378

ABSTRACT

It is well known that WO(3) interacts efficiently with H(2) gas in the presence of noble metals (such as Pd, Pt and Au) at elevated temperatures, changing its optical behaviors; and that its crystallinity plays an important role in these interactions. For the first time, we investigated the in situ Raman spectra changes of WO(3) films of different crystal phases, while incorporating Pd catalysts, at elevated temperatures in the presence of H(2). The Pd/WO(3) films were prepared using RF sputtering and subsequently annealed at 300, 400 and 500 °C in air in order to alter the dominant crystal phase. The films were then characterized using SEM, XRD, XPS, and both UV-VIS and Raman spectroscopy. In order to fundamentally study the process, the measurements were conducted when films were interacting with 1% H(2) in synthetic air at elevated sample temperatures (20, 60, 100 and 140 °C). We suggest that the changes of Raman spectra under such conditions to be mainly a function of the crystal phase, transforming from monoclinic to a mix phase of monoclinic and orthorhombic achieved via increasing the annealing temperature. The as-deposited sample consistently shows similar Raman spectra responses at different operating conditions upon H(2) exposure. However, increasing the annealing temperature to 500 °C tunes the optimum H(2) response operating temperature to 60 °C.

4.
Nanotechnology ; 21(26): 265502, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20534895

ABSTRACT

There has been significant interest in using electronically contacted nanorod or nanotube arrays as gas sensors, whereby an adsorbate modifies either the impedance or the Fermi level of the array, enabling detection. Typically, such arrays demonstrate the I-V curves of a Schottky diode that is formed using a metal-semiconductor junction with rectifying characteristics. We show in this work that nanostructured Schottky diodes have a functionally different response, characteristic of the large electric field induced by the size scale of the array. Specifically, they are characterized by a low reverse breakdown voltage. As a result, the reverse bias current becomes a strong function of the applied voltage. In this work, for the first time, we model this unique feature by describing the enhancement effect of high aspect ratio nanostructures on the I-V characteristics of a Schottky diode. A Pt/ZnO/SiC nanostructured Schottky diode is fabricated to verify the theoretical equations presented. The gas sensing properties of the Schottky diode in reversed bias is investigated and it is shown that the theoretical calculations are in excellent agreement with measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...