Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 22(4): 1599-1604, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31999127

ABSTRACT

A highly efficient Pd/Ca catalytic system for the directly dehydrative cross-coupling of allylic alcohols with terminal alkynes was developed. This calcium salt cocatalyst facilitates the oxidative addition of the palladium catalyst (1 mol %) to the C-OH bond. Then, the in situ-generated hydroxide ion deprotonates the terminal alkynes to promote the formation of the allylalkynylpalladium intermediate, liberating water as the only byproduct. This proposed mechanism is also supported by density functional theory calculations. An anticancer agent was prepared from inexpensive starting materials on a 10 g scale.

2.
Chem Commun (Camb) ; 54(79): 11132-11135, 2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30225501

ABSTRACT

A barium-catalyzed C-OH/P-H dehydrative cross-coupling protocol for the construction of C-P bonds was developed. This reaction was performed in an environmentally benign manner with water as the only by-product. A variety of allylic phosphorus compounds can be isolated in good to excellent yields.

3.
Org Lett ; 20(17): 5353-5356, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30106300

ABSTRACT

An environmentally benign protocol that affords propargylic sulfones containing highly congested carbon centers from easily accessible alcohols and sulfinic acids with water as the only byproduct is reported. The reaction proceeded via an in situ dehydrative cross-coupling process by taking advantage of the synergetic actions of multiple hydrogen bonds rather than relying on an external catalyst and/or additives to achieve high product distribution.

4.
Org Lett ; 20(11): 3341-3344, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29781271

ABSTRACT

A Bronsted acid/organic photoredox cooperative catalytic system toward P-C bond formation from alcohols and P-H species is developed. With the assistance of visible light and TBHP, the reactions proceeded smoothly in an environmentally benign manner to give various alkenylphosphorus compounds in high efficiency.

5.
Nat Commun ; 9(1): 1321, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615622

ABSTRACT

Allylic sulfones, owning to their widespread distributions in biologically active molecules, received increasing attention in the past few years. However, the synthetic method under mild conditions is still a challenging task. In this paper, we report a sulfinic acids ligation with allylic alcohols via metal-free dehydrative cross-coupling. Both aliphatic and aromatic sulfinic acids react with various allylic alcohols to deliver the desired allylic sulfones in high yields with excellent selectivity. This carbon-sulfur bond formation reaction is highly efficient and practical since it works under metal-free, neutral, aqueous media and at room temperature in which the products even can be obtained by simple filtration without the need for organic extraction or column chromatography. Water is found to be essential for the success of this carbon-sulfur bond formation reaction. DFT calculations imply that water acts as promoter in this transformation via intermolecular hydrogen bonds.

SELECTION OF CITATIONS
SEARCH DETAIL
...