Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathog Dis ; 75(5)2017 07 31.
Article in English | MEDLINE | ID: mdl-28431099

ABSTRACT

Genital infection by Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. It causes serious reproductive health complications, including pelvic inflammatory disease and infertility. Stress is implicated as a risk factor for various infections; however, its effect on chlamydia genital infection is unknown. We previously showed that repeated exposure of mice to cold water results in increased severity of chlamydia genital infection. In this study, cold water-induced stress resulted in (i) elevated levels of norepinephrine (NE) and epinephrine in the spleen and genital tract of stressed mice; (ii) elevated IL-1ß, TNF-α, IL-6 and nitric oxide production in macrophage-rich peritoneal cells of mice; (iii) supplement of NE in vitro exerts an immunosuppressive effect on splenic T-cell production of cytokines; (iv) decreased C. muridarum shedding in the genital tract of ß1Adr/ß2Adr receptor KO mice; and (v) a higher rate of infertility in infected mice. These results suggest that cold water stress induces the production of catecholamines, which may play a critical role in the modulation of the immune system leading to increased intensity of C. muridarum genital infection.


Subject(s)
Chlamydia Infections/pathology , Chlamydia muridarum/growth & development , Cold Temperature , Fertility/radiation effects , Reproductive Tract Infections/pathology , Stress, Physiological , Water , Animals , Catecholamines/metabolism , Disease Models, Animal , Immunologic Factors/metabolism , Mice
2.
Article in English | MEDLINE | ID: mdl-27790645

ABSTRACT

A cold-induced stress mouse model for investigating chlamydia genital infection and immune response analysis was established in our laboratory. Previous results showed that cold-induced stress results in suppression of the immune response and increased intensity of chlamydia genital infection in the mouse model. The purpose of the present study was to evaluate the potential therapeutic value of active hexose correlated compound (AHCC) against chlamydia genital infection in mice. AHCC is an extract of mushroom commonly used as a dietary supplement is known to boost the immune system. Mice were infected intravaginally with Chlamydia trachomatis after a 24-day cold-stress application. Oral administration of AHCC to stressed or non-stressed mice was carried out seven days before infection and during the course of infection along with cervicovaginal swabbing. Cytokine production by peritoneal and splenic T cells isolated from AHCC-fed stressed mice and non-stressed mice was measured ELISA. Splenic T cells from both animal groups were co-cultured with mouse monocyte J774.2 cell line or cultured by addition of supernatants of AHCC-treated J774.2 cell line for 24 hours. Infection studies showed that AHCC-feeding compared to phosphate buffered saline (PBS)-feeding to stressed mice resulted in reduced Chlamydia trachomatis shedding from the genital tract. Levels of tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) were significantly increased in stressed mice receiving AHCC compared to stressed mice receiving PBS. Production of interferon gamma (IFN-γ) and interleukin 2 (IL-2) in the AHCC group was significantly high compared to production in PBS-fed group. Splenic T cells from stressed and non-stressed cultured with supernatants of AHCC-treated J774.2 cell line resulted in significantly increased TNF-α or IFN-γ production. Results obtained in this study show that AHCC improves the function of immune cells as indicated by the restoration of levels of cytokines production that were suppressed under cold induced-stress conditions. This is the first report showing that oral administration of AHCC enhances the function of the immune system, which could result in increased resistance of the host to chlamydia genital infection.

3.
J Microbiol Immunol Infect ; 46(5): 330-7, 2013 Oct.
Article in English | MEDLINE | ID: mdl-22789437

ABSTRACT

BACKGROUND/PURPOSE(S): Genital infection by Chlamydia trachomatis (CT) is the most common bacterial sexually transmitted disease worldwide. The infection can cause serious reproductive health complications including pelvic inflammatory disease and infertility. Stress is implicated as a risk factor for various infections; however, its effect on Chlamydia genital infection and complications are unknown. METHODS: We investigated the effect of cold-stress on resistance to Chlamydia genital infection, stress hormone production, and the functions of immune cells in a mouse model. Mice were infected intravaginally with CT after a 24-day cold-stress application. The course of infection was monitored by cervicovaginal swabbing for isolation of live Chlamydia in tissue culture. The production of stress hormones and cytokines in genital tracts, spleen or blood were assessed. RESULTS: Exposure of mice to 24-day stress resulted in: (a) increased susceptibility to Chlamydia genital infection and greater intensity of infection, (b) increased plasma or tissue noradrenaline and adrenaline levels, and (c) decreased mRNA and protein levels of major cytokines and chemokines in the spleen and genital tract. CONCLUSION: These results suggest that cold-induced stress induces the production of catecholamines, which may play a critical role in the modulation of the immune system leading to increased susceptibility and greater intensity of Chlamydia genital infection that could promote the development of complications.


Subject(s)
Chlamydia Infections/immunology , Chlamydia Infections/pathology , Chlamydia trachomatis/immunology , Cold-Shock Response , Disease Susceptibility , Reproductive Tract Infections/immunology , Reproductive Tract Infections/pathology , Animals , Catecholamines/analysis , Catecholamines/blood , Chlamydia Infections/microbiology , Cytokines/analysis , Cytokines/blood , Disease Models, Animal , Female , Mice , Mice, Inbred BALB C , Reproductive Tract Infections/microbiology , Spleen/immunology , Spleen/microbiology , Vagina/immunology , Vagina/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...