Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int Urogynecol J ; 31(1): 107-115, 2020 01.
Article in English | MEDLINE | ID: mdl-30666428

ABSTRACT

INTRODUCTION AND HYPOTHESIS: SDF-1 chemokine enhances tissue regeneration through stem cell chemotaxis, neovascularization and neuronal regeneration. We hypothesized that non-viral delivery of human plasmids that express SDF-1 (pSDF-1) may represent a novel regenerative therapy for stress urinary incontinence (SUI). METHODS: Seventy-six female rats underwent vaginal distention (VD). They were then divided into four groups according to treatment: pSDF-1 (n = 42), sham (n = 30), PBS (n = 1) and luciferase-tagged pSDF-1 (n = 3). Immediately after VD, the pSDF-1 group underwent immediate periurethral injection of pSDF-1, and the sham group received a vehicle injection followed by leak point pressure (LPP) measurement at the 4th, 7th and 14th days. Urogenital tissues were collected for histology. H&E and trichrome slides were analyzed for vascularity and collagen/muscle components of the sphincter. For the luciferase-tagged pSDF-1 group, bioluminescence scans (BLIs) were obtained on the 3rd, 7th and 14th days following injections. Statistical analysis was conducted using ANOVA with post hoc LSD tests. The Mann-Whitney U test was employed to make pair-wise comparisons between the treated and sham groups. We used IBM SPSS, version 22, for statistical analyses. RESULTS: BLI showed high expression of luciferase-tagged pSDF-1 in the pelvic area over time. VD resulted in a decline of LPP at the 4th day in both groups. The pSDF1-treated group demonstrated accelerated recovery that was significantly higher than that of the sham-treated group at the 7th day (22.64 cmH2O versus 13.99 cmH2O, p < 0.001). Functional improvement persisted until the 14th day (30.51 cmH2O versus 24.11 cmH2O, p = 0.067). Vascularity density in the pSDF-1-treated group was higher than in the sham group at the 7th and 14th days (p < 0.05). The muscle density/sphincter area increased significantly from the 4th to 14th day only in the pSDF-1 group. CONCLUSIONS: Periurethral injection of pSDF-1 after simulated childbirth accelerated the recovery of continence and regeneration of the urethral sphincter in a rat SUI model. This intervention can potentially be translated to the treatment of post-partum urinary incontinence.


Subject(s)
Chemokine CXCL12/genetics , Genetic Therapy/methods , Puerperal Disorders/prevention & control , Urinary Incontinence, Stress/prevention & control , Animals , Disease Models, Animal , Injections , Plasmids , Random Allocation , Rats , Rats, Sprague-Dawley
2.
Cytotherapy ; 17(7): 817-31, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25728414

ABSTRACT

A successful potency assay for a cell therapy product (CTP) used in the treatment of ischemic conditions should quantitatively measure relevant biological properties that predict therapeutic activity. This is especially challenging because of numerous degrees of complexity stemming from factors that include a multifactorial complex mechanism of action, cell source, inherent cell characteristics, culture method, administration mode and the in vivo conditions to which the cells are exposed. The expected biological function of a CTP encompasses complex interactions that range from a biochemical, metabolic or immunological activity to structural replacement of damaged tissue or organ. Therefore, the requirements for full characterization of the active substance with respect to biological function could be taxing. Moreover, the specific mechanism of action is often difficult to pinpoint to a specific molecular entity; rather, it is more dependent on the functionality of the cellular components acting in a in a multifactorial fashion. In the case of ischemic conditions, the cell therapy mechanism of action can vary from angiogenesis, vasculogenesis and arteriogenesis that may activate different pathways and clinical outcomes. The CTP cellular attributes with relation to the suggested mechanism of action can be used for the development of quantitative and reproducible analytical potency assays. CTPs selected and released on the basis of such potency assays should have the highest probability of providing meaningful clinical benefit for patients. This White Paper will discuss and give examples for key elements in the development of a potency assay for treatment of ischemic disorders treated by the use of CTPs.


Subject(s)
Biological Assay/methods , Cell- and Tissue-Based Therapy/methods , Ischemia/therapy , Humans , Ischemia/diagnosis , Neovascularization, Physiologic/physiology
3.
Circulation ; 127(6): 710-9, 2013 Feb 12.
Article in English | MEDLINE | ID: mdl-23307829

ABSTRACT

BACKGROUND: Stem cells are thought to enhance vascular remodeling in ischemic tissue in part through paracrine effects. Using molecular imaging, we tested the hypothesis that treatment of limb ischemia with multipotential adult progenitor cells (MAPCs) promotes recovery of blood flow through the recruitment of proangiogenic monocytes. METHODS AND RESULTS: Hind-limb ischemia was produced in mice by iliac artery ligation, and MAPCs were administered intramuscularly on day 1. Optical imaging of luciferase-transfected MAPCs indicated that cells survived for 1 week. Contrast-enhanced ultrasound on days 3, 7, and 21 showed a more complete recovery of blood flow and greater expansion of microvascular blood volume in MAPC-treated mice than in controls. Fluorescent microangiography demonstrated more complete distribution of flow to microvascular units in MAPC-treated mice. On ultrasound molecular imaging, expression of endothelial P-selectin and intravascular recruitment of CX(3)CR-1-positive monocytes were significantly higher in MAPC-treated mice than in the control groups at days 3 and 7 after arterial ligation. Muscle immunohistology showed a >10-fold-greater infiltration of monocytes in MAPC-treated than control-treated ischemic limbs at all time points. Intravital microscopy of ischemic or tumor necrosis factor-α-treated cremaster muscle demonstrated that MAPCs migrate to perimicrovascular locations and potentiate selectin-dependent leukocyte rolling. In vitro migration of human CD14(+) monocytes was 10-fold greater in response to MAPC-conditioned than basal media. CONCLUSIONS: In limb ischemia, MAPCs stimulate the recruitment of proangiogenic monocytes through endothelial activation and enhanced chemotaxis. These responses are sustained beyond the MAPC lifespan, suggesting that paracrine effects promote flow recovery by rebalancing the immune response toward a more regenerative phenotype.


Subject(s)
Extremities/blood supply , Ischemia/therapy , Molecular Imaging , Neovascularization, Physiologic/physiology , Paracrine Communication/physiology , Stem Cell Transplantation , Adult Stem Cells/diagnostic imaging , Adult Stem Cells/drug effects , Adult Stem Cells/transplantation , Animals , CX3C Chemokine Receptor 1 , Cell Movement/physiology , Extremities/diagnostic imaging , Extremities/pathology , Humans , Iliac Artery/diagnostic imaging , Iliac Artery/drug effects , Iliac Artery/physiopathology , Ischemia/diagnostic imaging , Ischemia/pathology , Lipopolysaccharide Receptors/analysis , Mice , Mice, Inbred C57BL , Microvessels/diagnostic imaging , Microvessels/drug effects , Microvessels/pathology , Microvessels/physiopathology , Monocytes/pathology , Monocytes/physiology , Multipotent Stem Cells/diagnostic imaging , Multipotent Stem Cells/drug effects , Multipotent Stem Cells/transplantation , Muscle, Skeletal/blood supply , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Neovascularization, Physiologic/drug effects , P-Selectin/biosynthesis , Paracrine Communication/drug effects , Receptors, Chemokine/analysis , Transplantation, Heterologous , Tumor Necrosis Factor-alpha/pharmacology , Ultrasonography
4.
Cytotherapy ; 15(1): 9-19, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23260082

ABSTRACT

The evaluation of potency plays a key role in defining the quality of cellular therapy products (CTPs). Potency can be defined as a quantitative measure of relevant biologic function based on the attributes that are linked to relevant biologic properties. To achieve an adequate assessment of CTP potency, appropriate in vitro or in vivo laboratory assays and properly controlled clinical data need to be created. The primary objective of a potency assay is to provide a mechanism by which the manufacturing process and the final product for batch release are scrutinized for quality, consistency and stability. A potency assay also provides the basis for comparability assessment after process changes, such as scale-up, site transfer and new starting materials (e.g., a new donor). Potency assays should be in place for early clinical development, and validated assays are required for pivotal clinical trials. Potency is based on the individual characteristics of each individual CTP, and the adequacy of potency assays will be evaluated on a case-by-case basis by regulatory agencies. We provide an overview of the expectations and challenges in development of potency assays specific for CTPs; several real-life experiences from the cellular therapy industry are presented as illustrations. The key observation and message is that aggressive early investment in a solid potency evaluation strategy can greatly enhance eventual CTP deployment because it can mitigate the risk of costly product failure in late-stage development.


Subject(s)
Cell- and Tissue-Based Therapy , Humans
5.
Cytotherapy ; 14(8): 994-1004, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22687190

ABSTRACT

BACKGROUND AIMS: Clinical results from acute myocardial infarction (AMI) patients treated with MultiStem®, a large-scale expanded adherent multipotent progenitor cell population (MAPC), have demonstrated a strong safety and benefit profile for these cells. The mechanism of benefit with MAPC treatment is a result, in part, of its ability to induce neovascularization through trophic support. Production of clinical-grade stem cell products requires the development of lot-release criteria based on potency assays that directly reflect the fundamental mechanistic pathway underlying the therapeutic response to verify manufacturing process consistency and product potency. METHODS AND RESULTS: Using an in vitro endothelial tube formation assay, a potency assay has been developed that reflects MAPC pro-angiogenic activity. Serum-free conditioned media collected from MAPC culture induced endothelial tube formation. A proteomic survey of angiogenic factors produced by the cells in vitro revealed candidate factors linked to angiogenic potency. Three cytokines, chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF), were required for this angiogenic activity. Depletion of any of these factors from the media prevented tube formation, while adding back increasing amounts of these cytokines into the depleted serum-free conditioned media established the lower limits of each of the cytokines required to induce angiogenesis. CONCLUSIONS: A necessary threshold of angiogenic factor expression was established using an in vitro angiogenesis assay. By correlating the levels of the cytokines required to induce tube formation in vitro with levels of the factors found in the spent media from manufacturing production runs, detection of these factors was identified as a surrogate potency assay with defined pass/fail criteria.


Subject(s)
Cell Culture Techniques , Cell- and Tissue-Based Therapy , Endothelial Cells/cytology , Multipotent Stem Cells/cytology , Neovascularization, Physiologic , Bone Marrow Cells/cytology , Cell Differentiation , Culture Media, Conditioned , Culture Media, Serum-Free , Cytokines/metabolism , Gene Expression , Humans , Interleukin-8/metabolism , Multipotent Stem Cells/transplantation , Myocardial Infarction/therapy , Receptors, G-Protein-Coupled/metabolism , Vascular Endothelial Growth Factor A/metabolism
6.
Hum Mol Genet ; 20(14): 2846-60, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21536587

ABSTRACT

Huntington's disease is initiated by the expression of a CAG repeat-encoded polyglutamine region in full-length huntingtin, with dominant effects that vary continuously with CAG size. The mechanism could involve a simple gain of function or a more complex gain of function coupled to a loss of function (e.g. dominant negative-graded loss of function). To distinguish these alternatives, we compared genome-wide gene expression changes correlated with CAG size across an allelic series of heterozygous CAG knock-in mouse embryonic stem (ES) cell lines (Hdh(Q20/7), Hdh(Q50/7), Hdh(Q91/7), Hdh(Q111/7)), to genes differentially expressed between Hdh(ex4/5/ex4/5) huntingtin null and wild-type (Hdh(Q7/7)) parental ES cells. The set of 73 genes whose expression varied continuously with CAG length had minimal overlap with the 754-member huntingtin-null gene set but the two were not completely unconnected. Rather, the 172 CAG length-correlated pathways and 238 huntingtin-null significant pathways clustered into 13 shared categories at the network level. A closer examination of the energy metabolism and the lipid/sterol/lipoprotein metabolism categories revealed that CAG length-correlated genes and huntingtin-null-altered genes either were different members of the same pathways or were in unique, but interconnected pathways. Thus, varying the polyglutamine size in full-length huntingtin produced gene expression changes that were distinct from, but related to, the effects of lack of huntingtin. These findings support a simple gain-of-function mechanism acting through a property of the full-length huntingtin protein and point to CAG-correlative approaches to discover its effects. Moreover, for therapeutic strategies based on huntingtin suppression, our data highlight processes that may be more sensitive to the disease trigger than to decreased huntingtin levels.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Expression Regulation , Huntington Disease/metabolism , Nerve Tissue Proteins/biosynthesis , Nuclear Proteins/biosynthesis , Peptides/metabolism , Trinucleotide Repeat Expansion , Alleles , Animals , Cell Line , Gene Expression Profiling , Gene Knock-In Techniques , Genome-Wide Association Study , Huntingtin Protein , Huntington Disease/genetics , Huntington Disease/therapy , Mice , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Peptides/genetics
7.
Hum Mol Genet ; 19(4): 573-83, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-19933700

ABSTRACT

Huntington's disease (HD) is caused by expansion of the polymorphic polyglutamine segment in the huntingtin protein. Full-length huntingtin is thought to be a predominant HEAT repeat alpha-solenoid, implying a role as a facilitator of macromolecular complexes. Here we have investigated huntingtin's domain structure and potential intersection with epigenetic silencer polycomb repressive complex 2 (PRC2), suggested by shared embryonic deficiency phenotypes. Analysis of a set of full-length recombinant huntingtins, with different polyglutamine regions, demonstrated dramatic conformational flexibility, with an accessible hinge separating two large alpha-helical domains. Moreover, embryos lacking huntingtin exhibited impaired PRC2 regulation of Hox gene expression, trophoblast giant cell differentiation, paternal X chromosome inactivation and histone H3K27 tri-methylation, while full-length endogenous nuclear huntingtin in wild-type embryoid bodies (EBs) was associated with PRC2 subunits and was detected with trimethylated histone H3K27 at Hoxb9. Supporting a direct stimulatory role, full-length recombinant huntingtin significantly increased the histone H3K27 tri-methylase activity of reconstituted PRC2 in vitro, and structure-function analysis demonstrated that the polyglutamine region augmented full-length huntingtin PRC2 stimulation, both in Hdh(Q111) EBs and in vitro, with reconstituted PRC2. Knowledge of full-length huntingtin's alpha-helical organization and role as a facilitator of the multi-subunit PRC2 complex provides a novel starting point for studying PRC2 regulation, implicates this chromatin repressive complex in a neurodegenerative disorder and sets the stage for further study of huntingtin's molecular function and the impact of its modulatory polyglutamine region.


Subject(s)
Huntington Disease/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Animals , Disease Models, Animal , Female , Histones/genetics , Histones/metabolism , Humans , Huntingtin Protein , Huntington Disease/embryology , Huntington Disease/genetics , Male , Mice , Mice, Knockout , Molecular Sequence Data , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Polycomb-Group Proteins , Protein Binding , Repressor Proteins/genetics , Sequence Homology, Amino Acid
8.
BMC Dev Biol ; 5: 17, 2005 Aug 18.
Article in English | MEDLINE | ID: mdl-16109169

ABSTRACT

BACKGROUND: Huntingtin, the HD gene encoded protein mutated by polyglutamine expansion in Huntington's disease, is required in extraembryonic tissues for proper gastrulation, implicating its activities in nutrition or patterning of the developing embryo. To test these possibilities, we have used whole mount in situ hybridization to examine embryonic patterning and morphogenesis in homozygous Hdh(ex4/5) huntingtin deficient embryos. RESULTS: In the absence of huntingtin, expression of nutritive genes appears normal but E7.0-7.5 embryos exhibit a unique combination of patterning defects. Notable are a shortened primitive streak, absence of a proper node and diminished production of anterior streak derivatives. Reduced Wnt3a, Tbx6 and Dll1 expression signify decreased paraxial mesoderm and reduced Otx2 expression and lack of headfolds denote a failure of head development. In addition, genes initially broadly expressed are not properly restricted to the posterior, as evidenced by the ectopic expression of Nodal, Fgf8 and Gsc in the epiblast and T (Brachyury) and Evx1 in proximal mesoderm derivatives. Despite impaired posterior restriction and anterior streak deficits, overall anterior/posterior polarity is established. A single primitive streak forms and marker expression shows that the anterior epiblast and anterior visceral endoderm (AVE) are specified. CONCLUSION: Huntingtin is essential in the early patterning of the embryo for formation of the anterior region of the primitive streak, and for down-regulation of a subset of dynamic growth and transcription factor genes. These findings provide fundamental starting points for identifying the novel cellular and molecular activities of huntingtin in the extraembryonic tissues that govern normal anterior streak development. This knowledge may prove to be important for understanding the mechanism by which the dominant polyglutamine expansion in huntingtin determines the loss of neurons in Huntington's disease.


Subject(s)
Body Patterning , Gastrula , Gene Silencing , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Animals , Embryo, Mammalian , Gene Expression Regulation, Developmental , Growth and Development/genetics , Huntingtin Protein , Huntington Disease , Mice , Nerve Tissue Proteins/deficiency , Nuclear Proteins/deficiency , Transcription Factors/genetics
9.
Development ; 130(2): 331-42, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12466200

ABSTRACT

The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates.


Subject(s)
Ectoderm/physiology , Embryonic Structures/physiology , Homeodomain Proteins/metabolism , Morphogenesis/physiology , Nervous System/embryology , Transcription Factors/metabolism , Animals , Cell Differentiation/physiology , Cell Lineage , In Situ Hybridization , Tissue Transplantation , Xenopus Proteins/metabolism , Xenopus laevis/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...