Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Hered ; 112(5): 436-442, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34432873

ABSTRACT

Only the blue dun coat color, produced by the action of the dun allele on the background of a black base coat, is officially permitted in the Polish primitive horse (PPH, Konik) breed, yet the population is not visually homogenous and various coat color shades occur. Herein, the molecular background of PPH coat color was studied based on genotyping of known causative variants in equine coat color-related genes (ASIP, MC1R, TBX3, SLC36A1, SLC45A2, PMEL17, and RALY). Additionally, screening for the new polymorphisms was conducted for the ASIP gene coding sequence and the TBX3 1.6-kb insert (associated with the dun dilution). We did not observe the champagne, silver, or cream color dilution variants in the PPH breed. A significant association (P < 0.01) was recorded for the genotype in TBX3 gene 1.6 kb in/del and the degree of dun coat dilution, demonstrating that the dominant action of the dun mutation is not fully penetrant. In addition to the effect of the 1.6 kb in/del zygosity, variants within the TBX3 insert were significantly associated with PPH coat color variability (P < 0.01), suggesting the presence of an additional allele at this locus. Finally, we identified a high frequency (35%) of genetically bay dun-colored PPH individuals that are officially recorded as blue (black base coat) duns. We propose that the difficulty in distinguishing these 2 phenotypes visually is due to an independent locus upstream of the ASIP gene, which was recently described as darkening the typical bay pigmentation shade.


Subject(s)
Genetic Background , Hair Color , Alleles , Animals , Hair Color/genetics , Horses/genetics , Phenotype , Poland
2.
PLoS One ; 15(4): e0232066, 2020.
Article in English | MEDLINE | ID: mdl-32320437

ABSTRACT

ß-lactoglobulin is one of the most abundant milk whey proteins in many mammal species, including the domestic horse. The aim of this study was to screen for polymorphism in the equine LGB1 and LGB2 gene sequences (all exons, introns, and 5'-flanking region) and to assess potential relationship of particular genotypes with gene expression levels (measured in milk somatic cells) and milk composition traits (protein, fat, lactose, and total ß-lactoglobulin content). Direct DNA sequencing analysis was performed for twelve horse breeds: Polish Primitive Horse (PPH), Polish Coldblood Horse (PCH), Polish Warmblood Horse (PWH), Silesian, Hucul, Fjording, Haflinger, Shetland Pony, Welsh Pony, Arabian, Thoroughbred, and Percheron-and revealed the presence of 83 polymorphic sites (47 and 36 for LGB1 and LGB2 genes, respectively), including eight that were previously unknown. Association analysis of the selected polymorphisms, gene expression, and milk composition traits (conducted for the PPH, PCH, and PWH breeds) showed several statistically significant relationships; for example, the two linked LGB1 SNPs (rs1143515669 and rs1144647991) were associated with total milk protein content (p < 0.01). Our study also confirmed that horse breed had significant impact on both gene transcript levels (p < 0.01) and on milk LGB content (p < 0.05), whereas an influence of lactation period was seen only for gene relative mRNA abundances (p < 0.01).


Subject(s)
Horses/genetics , Lactoglobulins/genetics , Milk Proteins/genetics , Milk/chemistry , Polymorphism, Single Nucleotide , Animals , Exons , Female , Gene Expression Regulation , Introns , Lactation , Milk/physiology , Milk Proteins/metabolism
3.
J Appl Genet ; 60(1): 71-78, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30328055

ABSTRACT

Genes encoding casein proteins are important candidates for milk composition traits in mammals. In the case of the domestic horse, our knowledge of casein genes is limited mainly to coding sequence variants. This study involved screening for polymorphism in 5'-flanking regions of four genes encoding equine caseins (CSN1S1, CSN1S2, CSN2, and CSN3) and making a preliminary assessment of their effect on the gene expression (on the mRNA and protein levels) and milk composition traits in selected horse breeds. Altogether, 23 polymorphisms (21 described previously SNPs and two novel InDels) were found in the studied sequences, the majority of which are common in various horse breeds. Statistical analysis revealed that some are putatively associated with gene expression or milk composition - for example, the c.-2047_-2048insAT polymorphism (CSN1S1) turns out to be related to the total milk protein content in Polish Primitive Horse (p < 0.05), whereas c.-2105C>G SNP (CSN2) is related to beta-casein relative mRNA level and milk lactose concentration in the Polish Coldblood Horse breed (p < 0.05). We have also found significant effects of horse breed and lactation time-point on gene expression and mare's milk composition. Our study indicates that the 5'-regulatory regions of genes encoding casein proteins are interesting targets for functional studies of their expression and the composition traits of mare's milk.


Subject(s)
Caseins/genetics , Horses/genetics , Milk/chemistry , Animals , Breeding , Female , Lactation , Lactose/analysis , Polymorphism, Single Nucleotide
4.
PeerJ ; 5: e3714, 2017.
Article in English | MEDLINE | ID: mdl-28852595

ABSTRACT

The Polish Primitive Horse (PPH, Konik) is a Polish native horse breed managed through a conservation program mainly due to its characteristic phenotype of a primitive horse. One of the most important goals of PPH breeding strategy is the preservation and equal development of all existing maternal lines. However, until now there was no investigation into the real genetic diversity of 16 recognized PPH dam lines using mtDNA sequence variation. Herein, we describe the phylogenetic relationships between the PPH maternal lines based upon partial mtDNA D-loop sequencing of 173 individuals. Altogether, 19 mtDNA haplotypes were detected in the PPH population. Five haplotypes were putatively novel while the remaining 14 showed the 100% homology with sequences deposited in the GenBank database, represented by both modern and primitive horse breeds. Generally, comparisons found the haplotypes conformed to 10 different recognized mtDNA haplogroups (A, B, E, G, J, M, N, P, Q and R). A multi-breed analysis has indicated the phylogenetic similarity of PPH and other indigenous horse breeds derived from various geographical regions (e.g., Iberian Peninsula, Eastern Europe and Siberia) which may support the hypothesis that within the PPH breed numerous ancestral haplotypes (found all over the world) are still present. Only in the case of five maternal lines (Bona, Dzina I, Geneza, Popielica and Zaza) was the segregation of one specific mtDNA haplotype observed. The 11 remaining lines showed a higher degree of mtDNA haplotype variability (2-5 haplotypes segregating in each line). This study has revealed relatively high maternal genetic diversity in the small, indigenous PPH breed (19 haplotypes, overall HapD = 0.92). However, only some traditionally distinguished maternal lines can be treated as genetically pure. The rest show evidence of numerous mistakes recorded in the official PPH pedigrees. This study has proved the importance of maternal genetic diversity monitoring based upon the application of molecular mtDNA markers and can be useful for proper management of the PPH conservation program in the future.

5.
J Sci Food Agric ; 97(7): 2174-2181, 2017 May.
Article in English | MEDLINE | ID: mdl-27611486

ABSTRACT

BACKGROUND: Equine milk is considered to be an interesting product for human nutrition, mainly owing to its low allergenicity and significant amounts of bioactive proteins, including lysozyme (LYZ) and lactoferrin (LTF). The present study assessed the effect of genetic factors on LYZ and LTF concentration variability in mare's milk. RESULTS: Significant effects of horse breed and lactation stage on milk LYZ and LTF contents were observed. The highest level of LTF and the lowest concentration of LYZ were recorded for the Polish Warmblood Horse breed. The highest amounts of both proteins were found for the earliest investigated time point of lactation (5th week). Altogether 13 (nine novel) polymorphisms were found in the 5'-flanking regions of both genes, but they showed no significant relationship with milk LYZ and LTF contents. Several associations were found between selected SNPs and the LYZ gene relative transcript level. CONCLUSION: While the present study indicated the existence of intra- and interbreed variability of LYZ and LTF contents in mare's milk, this variation is rather unrelated to the 5'-flanking variants of genes encoding both proteins. This study is a good introduction for broader investigations focused on the genetic background for variability of bioactive protein contents in mare's milk. © 2016 Society of Chemical Industry.


Subject(s)
Horses/genetics , Lactoferrin/genetics , Milk/chemistry , Muramidase/genetics , Polymorphism, Genetic , Animals , Breeding , Female , Genotype , Horses/metabolism , Lactation , Lactoferrin/physiology , Milk/metabolism , Muramidase/metabolism
6.
J Dairy Sci ; 99(2): 1277-1285, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26709185

ABSTRACT

Currently, research interest is increasing in horse milk composition and its effect on human health. Despite previously published studies describing the presence of intra- and interbreed variability of equine milk components, no investigations have focused on the genetic background of this variation. Among horse caseins and the genes encoding them, least is known about the structure and expression of the α-S2 casein gene, CSN1S2. Herein, based on direct sequencing of the equine CSN1S2 coding sequence, we describe the presence of 51-bp insertion-deletion (in/del) polymorphism, which significantly changes the protein sequence (lack or presence of 17-amino acid serine-rich peptide). Bioinformatic analysis revealed that the observed in/del polymorphism spanned exactly 2 exons; therefore, we hypothesized that we were observing different CSN1S2 splicing isoforms. However, further investigation indicated that the detected sequence variation was caused by a large (1.3-kb) deletion in the genomic DNA. We found that the polymorphic forms (A, longer; B, shorter; KP658381 and KP658382 GenBank records, respectively) were unevenly distributed among different horse breeds (the highest frequency of variant B was observed in coldblood horses and Haflingers). We propose that the analyzed polymorphism is associated with CSN1S2 expression level (the highest expression was recorded for individuals carrying the BB genotype), which was much more pronounced for milk CSN1S2 protein content than for relative transcript abundance (measured in milk somatic cells). Our results provide insight into the equine CSN1S2 structure and lay a foundation for further functional analyses regarding, for example, allergenicity or physiochemical properties of the observed CSN1S2 variants.


Subject(s)
Caseins/genetics , Genetic Variation/genetics , Horses/genetics , Proteomics , Transcriptome/genetics , Amino Acid Sequence , Animals , Breeding , Caseins/chemistry , DNA/chemistry , DNA/genetics , Gene Deletion , Genotype , Milk/chemistry , Milk Proteins/analysis , Molecular Sequence Data , Open Reading Frames , Polymorphism, Genetic/genetics , RNA, Messenger/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...