Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 38(22): 7118-30, 1999 Jun 01.
Article in English | MEDLINE | ID: mdl-10353822

ABSTRACT

The tryptophan synthase bienzyme complex is activated and regulated by the allosteric action of monovalent cations (MVCs). The kinetic dissection of the first stage (stage I) in the beta-reaction of tryptophan synthase, the reaction of L-serine with pyridoxal 5'-phosphate at the beta-site to give the alpha-aminoacrylate Schiff base intermediate, E(A-A), is here examined in the absence and presence of MVCs. This analysis reveals which of the individual steps are greatly affected in stage I and how the ground states and transition states are affected by MVCs. Kinetic studies in combination with a detailed relaxation kinetic analysis to determine the specific rate constants for the conversion of the L-Ser external aldimine, E(Aex1), to E(A-A) show that the primary kinetic isotope effect for proton abstraction from Calpha of the E(Aex1) species changes from 4.0 +/- 0.4 in the absence of MVCs to a value of 5.9 +/- 0.5 in the presence of Na+, indicating that the nature of the transition state for this C-H scission is significantly perturbed by the MVC effect. The E(A-A) species was found to exist in two conformations with different activities, the ratio of which is affected by the presence of MVCs. It is shown that changes in the rate constants of stage I are important in establishing the ratio of active to inactive conformations of the E(A-A) species. Consequently, the MVC effect alters the relative energies of both the transition states and the ground states for selected steps in stage I of the pathway. Hence, interactions at the MVC site give rise to a fine-tuning of the covalent bonding interactions between active site residues and the reacting substrate during the conformational cycle of the bienzyme complex.


Subject(s)
Cations, Monovalent/chemistry , Tryptophan Synthase/chemistry , Binding Sites , Catalysis , Crystallography, X-Ray , Enzyme Activation , Kinetics , Models, Chemical , Models, Molecular , Mutagenesis, Site-Directed , Protons , Quaternary Ammonium Compounds/chemistry , Salmonella typhimurium/enzymology , Solutions , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Structure-Activity Relationship , Tryptophan Synthase/genetics
2.
Biochemistry ; 38(22): 7131-41, 1999 Jun 01.
Article in English | MEDLINE | ID: mdl-10353823

ABSTRACT

The alpha-subunit of the tryptophan synthase bienzyme complex catalyzes the formation of indole from the cleavage of 3-indolyl-D-glyceraldehyde 3'-phosphate, while the beta-subunit utilizes L-serine and the indole produced at the alpha-site to form tryptophan. The replacement reaction catalyzed by the beta-subunit requires pyridoxal 5'-phosphate (PLP) as a cofactor. The beta-reaction occurs in two stages: in stage I, the first substrate, L-Ser, reacts with the enzyme-bound PLP cofactor to form an equilibrating mixture of the L-Ser Schiff base, E(Aex1), and the alpha-aminoacrylate Schiff base intermediate, E(A-A); in stage II, this intermediate reacts with the second substrate, indole, to form tryptophan. Monovalent cations (MVCs) are effectors of these processes [Woehl, E., and Dunn, M. F. (1995) Biochemistry 34, 9466-9476]. Herein, detailed kinetic dissections of stage II are described in the absence and in the presence of MVCs. The analyses presented complement the results of the preceding paper [Woehl, E., and Dunn, M. F. (1999) Biochemistry 38, XXXX-XXXX], which examines stage I, and confirm that the chemical and conformational processes in stage I establish the presence of two slowly interconverting conformations of E(A-A) that exhibit different reactivities in stage II. The pattern of kinetic isotope effects on the overall activity of the beta-reaction shows an MVC-mediated change in rate-limiting steps. In the absence of MVCs, the reaction of E(A-A) with indole becomes the rate-limiting step. In the presence of Na+ or K+, the conversion of E(Aex1) to E(A-A) is rate limiting, whereas some third process not subject to an isotope effect becomes rate determining for the NH4+-activated enzyme. The combined results from the preceding paper and from this study define the MVC effects, both for the reaction catalyzed by the beta-subunit and for the allosteric communication between the alpha- and beta-sites. Partial reaction-coordinate free energy diagrams and simulation studies of MVC effects on the proposed mechanism of the beta-reaction are presented.


Subject(s)
Cations, Monovalent/chemistry , Tryptophan Synthase/chemistry , Catalysis , Enzyme Activation , Enzyme Stability , Indoles/chemistry , Kinetics , Models, Chemical , Protons , Quaternary Ammonium Compounds/chemistry , Quinones/chemistry , Salmonella typhimurium/enzymology , Sodium Chloride/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Structure-Activity Relationship , Time Factors , Titrimetry
3.
Trends Biochem Sci ; 22(1): 22-7, 1997 Jan.
Article in English | MEDLINE | ID: mdl-9020588

ABSTRACT

The alpha 2 beta 2 form of the tryptophan synthase bienzyme complex catalyses the last two steps in the synthesis of L-tryptophan, consecutive processes that depend on the channeling of the common metabolite, indole, between the sites of the alpha- and beta-subunits through a 25 A-long tunnel. The channeling of indole and the coupling of the activities of the two sites are controlled by allosteric signals derived from covalent transformations at the beta-site that switch the enzyme between an open, low-activity state, to which ligands bind, and a closed, high-activity state, which prevents the escape of indole.


Subject(s)
Protein Conformation , Tryptophan Synthase/chemistry , Allosteric Regulation , Catalysis , Indoles/chemistry
4.
J Biol Chem ; 271(42): 25842-9, 1996 Oct 18.
Article in English | MEDLINE | ID: mdl-8824215

ABSTRACT

O-Acetylserine sulfhydrylase (OASS) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the final step in the de novo synthesis of L-cysteine in Salmonella typhimurium. Complementary cofactor mutagenesis in which the active site PLP is substituted with cofactor analogs is used to test the mechanism proposed for the OASS. Data obtained with the pyridoxal 5'-deoxymethylenephosphonate-substituted enzyme suggest that the binding of OAS as it forms the external Schiff base is such that the acetate side chain is properly positioned for elimination (orthogonal to the developing alpha,beta-double bond) only about 1% of the time. Data support the assignment of an enzyme group with a pK of 6.7 that interacts with the acetyl side chain, maintaining it orthogonal to the developing alpha,beta-double bond. Similar studies of the 2'-methylpyridoxal 5'-phosphate-substituted enzyme suggest that, although the mechanism is identical to that catalyzed by native OASS, the reaction coordinate for alpha-proton abstraction may be decreased compared with that observed for the native enzyme.


Subject(s)
Alanine/analogs & derivatives , Cysteine Synthase/metabolism , Pyridoxal Phosphate/metabolism , Salmonella typhimurium/enzymology , Alanine/metabolism , Circular Dichroism , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
5.
Biochemistry ; 35(20): 6358-65, 1996 May 21.
Article in English | MEDLINE | ID: mdl-8639581

ABSTRACT

Primary and alpha-secondary deuterium kinetic isotope effects have been measured for the O-acetylserine sulfhydrylase from Salmonella typhimurium using both steady-state and single-wavelength stopped-flow studies. Data suggest an asymmetric transition state for alpha-proton abstraction by the active site lysine and the elimination of the acetyl group of O-acetyl-L-serine (OAS) to form the alpha-aminoacrylate intermediate. The value of D(V/KOAS) using OAS-2-d is dependent on pH from 5.8 to 7.0 with independent values of 2.8 and 1.7 estimated at low and high pH, respectively. Thus, OAS is sticky, and a value of 1.5 is calculated for the forward commitment to catalysis, indicating that the OAS external Schiff base preferentially partitions toward the alpha-aminoacrylate intermediate compared to OAS being released from enzyme. The intrinsic primary deuterium isotope effect determined from single-wavelength stopped-flow studies of alpha-proton abstraction by the active site lysine is about 2.0. D(V/KOAS) and T(V/KOAS) were determined as 2.6 +/- 0.1 and 4.2 +/- 0.2 at pH 6.1, respectively, giving a calculated intrinsic deuterium isotope effect of 3.3 +/- 0.9, consistent with the D(V/KOAS) obtained from steady-state studies at low pH. The alpha-secondary deuterium kinetic isotope effect using OAS-3,3-d2 is 1.11 +/- 0.06 obtained by direct comparison of initial velocities and 1.2 obtained by single-wavelength stopped-flow experiments. Data can be compared to a value of 1.81 +/- 0.04 using OAS-3,3-d2 for alpha-DKeq for the first half-reaction.


Subject(s)
Cysteine Synthase/metabolism , Catalysis , Deuterium , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Molecular Probes , Salmonella typhimurium/enzymology , Schiff Bases/chemistry , Schiff Bases/metabolism , Serine/chemistry , Spectrophotometry , Tritium
6.
Biochemistry ; 35(15): 4776-83, 1996 Apr 16.
Article in English | MEDLINE | ID: mdl-8664267

ABSTRACT

O-Acetylserine sulfhydrylase-A (OASS-A) catalyzes the final step in the synthesis of L-cysteine, viz., the beta-substitution of acetate in O-acetyl-L-serine (OAS) by sulfide via a ping-pong kinetic mechanism . Rapid-scanning stopped-flow and single-wavelength absorbance and fluorescence stopped-flow experiments were carried out to obtain information on the location and amount of limitation of rate-determining steps for the overall reaction and the individual half-reactions of OASS-A. The first half-reaction, conversion of OAS to the alpha-aminoacrylate intermediate and acetate, is rate-limiting for the overall reaction catalyzed by OASS-A. No intermeidates are detected within the second half-reaction, and thus rate constants for all steps must be > or = 1000s-1 at the lowest sulfide concentration used. Within the first half reaction, formation of the extrernal Schiff base (Kassociation = 0.2 mM-1) is observed in the first milliseconds, followed by its slower conversion to the alpha-aminocacrylate intermediate with a rate constant of 300 s-1, close to the value of 130 s-1 obtained for V/Et [Tai, C.H., Nalabolu, S.R., Jacobson, T.M., Minter D.E., & Cook, P.F. (1993) Biochemistry 32, 6433-6442]. Addition of L-cysterine ot OASS-A results in a rapid formation of the external Schiff base (Kassociation = 6.7 mM-1), followed by transient formation of the alpha-aminoacylate intermediate with a slightly lower rate (70-100 s-1) compared to OAS. The alpha-aminoacrylate intermediate decays to generate a species absorbing maximally at 418 nm, resulting from attack of the cysteine thiol to give ether in external Schiff base linkage with the active site PLP.


Subject(s)
Alanine/analogs & derivatives , Cysteine Synthase/metabolism , Salmonella typhimurium/enzymology , Alanine/biosynthesis , Catalysis , Kinetics , Schiff Bases , Spectrophotometry, Ultraviolet
7.
Biochemistry ; 34(29): 9466-76, 1995 Jul 25.
Article in English | MEDLINE | ID: mdl-7626617

ABSTRACT

This investigation shows that the alpha 2 beta 2 tryptophan synthase bienzyme complex from Salmonella typhimurium is subject to monovalent metal ion activation. The effects of the monovalent metal ions Na+ and K+ were investigated using rapid scanning stopped-flow (RSSF), single-wavelength stopped-flow (SWSF), and steady-state techniques. RSSF measurements of individual steps in the reaction of L-serine and indole to give L-trytophan (the beta-reaction) as well as the reaction of 3-indole-D-glycerol 3'-phosphate (IGP) with L-serine (the alpha beta-reaction) demonstrate that monovalent metal ions such as Na+ and K+ change the distribution of intermediates in both the transient and steady states. Therefore the metal ion effect alters relative ground-state energies and the relative positions of ground- and transition-state energies. The RSSF spectra and SWSF time courses show that the turnover of indole is significantly reduced in the absence of either Na+ or K+. The alpha-aminoacrylate Schiff base species, E(A-A), is in a less active state in the absence of monovalent metal ions. Na+ decreases the steady-state rate of IGP cleavage (the alpha-reaction) to about 30% of the value obtained in the absence of metal ions. Steady-state investigations show that in the absence of monovalent metal ions the alpha- and alpha beta-reactions have the same activity. Na+ binding gives a 30-fold stimulation of the alpha-reaction when the beta-site is in the E(A-A) form.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Cations, Monovalent/pharmacology , Potassium/pharmacology , Salmonella typhimurium/enzymology , Sodium/pharmacology , Tryptophan Synthase/chemistry , Tryptophan Synthase/metabolism , Binding Sites , Catalysis , Glycerophosphates/metabolism , Kinetics , Macromolecular Substances , Mathematics , Models, Theoretical , Serine , Spectrophotometry , Time Factors , Tryptophan/metabolism , Tryptophan Synthase/drug effects
8.
Biochemistry ; 34(19): 6552-61, 1995 May 16.
Article in English | MEDLINE | ID: mdl-7756286

ABSTRACT

This work examines two aspects of the catalytic mechanism and allosteric regulation of the tryptophan synthase bienzyme complex from Salmonella typhimurium: (a) the chemical mechanism by which indole and other nucleophiles react with the enzyme-bound alpha-aminoacrylate Schiff base intermediate, E(A-A), to form quinonoidal intermediates, E(Q), and (b) the effects of covalent transformations at the beta-site on the catalytic activity of the alpha-site. Transient kinetic studies in combination with alpha-secondary deuterium isotope effects are undertaken to determine the mechanism of nucleophile addition to E(A-A). These studies establish that nucleophilic attack is best described by a two-step reaction sequence consisting of a binding step that is followed by Michael addition to the conjugated double bond of E(A-A). Analysis of isotope effects suggests that the transition state for indole addition gives an E(A-A) beta-carbon that resembles an sp3 center, while the stronger nucleophiles, indoline and beta-mercaptoethanol, have transition states that appear to more closely resemble an sp2 beta-carbon. The effects of beta-site covalent transformations on alpha-site catalysis were studied using quasi-stable beta-site intermediates and the alpha-site substrate analogue 3-[6-nitroindole]-D-glycerol 3'-phosphate (6-nitro-IGP). It was found that the cleavage of 6-nitro-IGP is strongly activated by the formation of E(A-A) and various E(Q) species at the beta-site but not by external aldimine species. Therefore, we conclude that the conversion of the L-Ser external aldimine to E(A-A) is the beta-site process which activates the alpha-site, while conversion of E(Q) to the L-Trp external aldimine triggers deactivation of the alpha-site. These findings are discussed within the context of allosteric regulation of substrate channeling in tryptophan synthase catalysis.


Subject(s)
Allosteric Regulation , Tryptophan Synthase/chemistry , Binding Sites , Enzyme Activation , Indoles/metabolism , Kinetics , Multienzyme Complexes , Salmonella typhimurium/enzymology , Tryptophan Synthase/metabolism
9.
J Biol Chem ; 269(32): 20239-49, 1994 Aug 12.
Article in English | MEDLINE | ID: mdl-8051115

ABSTRACT

The role of the proximal histidine ligand in peroxidase function was studied by replacing the His side chain in cytochrome c peroxidase with Gln, Glu, or Cys. In addition, a double mutant was prepared where His-175 is converted to Gln and the site of free radical formation in Compound I, Trp-191 (Sivaraja, M., Goodin, D.B., Smith, M., and Hoffman, B. M. (1989) Science 245, 738-740), is converted to Phe. With the exception of the His-175-->Cys mutant, the proximal ligand mutants retain high levels of enzyme activity. Stopped flow studies show that replacing the His ligand with Gln has only a modest effect on the rate of Compound I formation demonstrating that the precise nature of the proximal ligand is not important in achieving a high rate of peroxide O-O bond cleavage. The double mutant, His-175-->Gln/Trp-191-->Phe, also forms Compound I rapidly but the initial product formed is very likely a long-lived porphyrin pi cation radical that slowly converts to a species more closely resembling the heme oxyferryl center of wild type Compound I. The relevance of these studies to the cytochrome c peroxidase-cytochrome c electron transfer system are discussed.


Subject(s)
Cytochrome-c Peroxidase/metabolism , Crystallography, X-Ray , Cytochrome-c Peroxidase/chemistry , Cytochrome-c Peroxidase/genetics , Electron Spin Resonance Spectroscopy , Kinetics , Ligands , Mutagenesis, Site-Directed , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...