Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 120(8): 083401, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29543028

ABSTRACT

We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a p-wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral line shape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, n. Spectral features are described with a functional determinant approach (FDA) that solves an extended Fröhlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with a FDA.

2.
Appl Opt ; 38(12): 2540-4, 1999 Apr 20.
Article in English | MEDLINE | ID: mdl-18319824

ABSTRACT

A calcium atomic beam has been decelerated by a single extended-cavity diode laser, frequency doubled to 423 nm. A potassium niobate crystal is placed in an external power buildup cavity, and the second-harmonic laser beam, counterpropagating with the atomic beam, is tuned into resonance with the strong 1S0-1P1 transition of calcium. For input power of 78 mW at 846 nm, we generate 22 mW at 423 nm after correction for the reflectivity of our cavity output coupler. To keep the atoms always in resonance during the deceleration process, the Zeeman tuning technique was used.

SELECTION OF CITATIONS
SEARCH DETAIL
...