Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 8(16): 8976-8982, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-35539868

ABSTRACT

Optical and photocatalytic properties were determined for the solid solution series (GaN)1-x (ZnO) x synthesized at high pressure over the entire compositional range (x = 0.07 to 0.9). We report for the first time photocatalytic H2 evolution activity from water for (GaN)1-x (ZnO) x without cocatalysts, pH modifiers and sacrificial reagents. Syntheses were carried out by reacting GaN and ZnO in appropriate amounts at temperatures ranging from 1150 to 1200 °C, and at a pressure of 1 GPa. ZnGa2O4 was observed as a second phase, with the amount decreasing from 12.8 wt% at x = 0.07 to ∼0.5 wt% at x = 0.9. The smallest band gap of 2.65 eV and the largest average photocatalytic H2 evolution rate of 2.31 µmol h-1 were observed at x = 0.51. Samples with x = 0.07, 0.24 and 0.76 have band gaps of 2.89 eV, 2.78 eV and 2.83 eV, and average hydrogen evolution rates of 1.8 µmol h-1, 0.55 µmol h-1 and 0.48 µmol h-1, respectively. The sample with x = 0.9 has a band gap of 2.82 eV, but did not evolve hydrogen. An extended photocatalytic test showed considerable reduction of activity over 20 hours.

2.
Inorg Chem ; 55(23): 12270-12280, 2016 Dec 05.
Article in English | MEDLINE | ID: mdl-27934402

ABSTRACT

We report solid-state 27Al NMR spectroscopic results for the sulfate salt of the γ-Al13 Keggin cluster, γ-[AlO4Al12(OH)25(OH2)11][SO4]3·[H2O]14, that provide a spectroscopic signature for partial hydrolysis of this Keggin-type cluster. In 27Al multiple-quantum magic-angle spinning NMR spectra, all 13 Al positions of the cluster are at least partially resolved and assigned with the aid of density functional theory (DFT) calculations of the 27Al electric field gradients. The isotropic chemical shift of the single tetrahedral site, 75.7 ppm, is nearly identical to that reported for solutions from which the cluster crystallizes. Reflecting broadly similar coordination environments, the octahedral Al show mostly small variations in isotropic chemical shift (+7 to +11 ppm) and quadrupolar coupling constant (CQ; 6-7.5 MHz), except for one resonance that exhibits a much smaller CQ and another site with a larger value. DFT calculations show that deprotonation of a terminal water ligand, to form an η-OH group, causes a large reduction in the 27Al CQ, allowing assignment of a distinct, narrow peak for octahedral Al to this hydroxyl-terminated site. This result suggests a relationship between octahedral 27Al NMR line width and hydrolysis for solids prepared from Keggin-type clusters.

3.
Inorg Chem ; 55(7): 3384-92, 2016 Apr 04.
Article in English | MEDLINE | ID: mdl-27002597

ABSTRACT

The application of pressure in solid-state synthesis provides a route for the creation of new and exciting materials. However, the onerous nature of high-pressure techniques limits their utility in materials discovery. The systematic search for novel oxynitrides-semiconductors for photocatalytic overall water splitting-is a representative case where quench high-pressure synthesis is useful and necessary in order to obtain target compounds. We utilize state of the art crystal structure prediction theory (USPEX) and in situ synchrotron-based X-ray scattering to speed up the discovery and optimization of novel compounds using high-pressure synthesis. Using this approach, two novel oxynitride phases were discovered in the GaN-Nb2O5 system. The (Nb2O5)0.84:(NbO2)0.32:(GaN)0.82 rutile structured phase was formed at 1 GPa and 900 °C and gradually transformed to a α-PbO2-related structure above 2.8 GPa and 1000 °C. The low-pressure rutile type phase was found to have a direct optical band gap of 0.84 eV and an indirect gap of 0.51 eV.

4.
Chem Sci ; 7(1): 759-765, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-29896359

ABSTRACT

The efficiency of physisorption-based separation of gas-mixtures depends on the selectivity of adsorbent which is directly linked to size, shape, polarizability and other physical properties of adsorbed molecules. Commensurate adsorption is an interesting and important adsorption phenomenon, where the adsorbed amount, location, and orientation of an adsorbate are commensurate with the crystal symmetry of the adsorbent. Understanding this phenomenon is important and beneficial as it can provide vital information about adsorbate-adsorbent interaction and adsorption-desorption mechanism. So far, only sporadic examples of commensurate adsorption have been reported in porous materials such as zeolites and metal organic frameworks (MOFs). In this work we show for the first time direct structural evidence of commensurate-to-incommensurate transition of linear hydrocarbon molecules (C2-C7) in a microporous MOF, by employing a number of analytical techniques including single crystal X-ray diffraction (SCXRD), in situ powder X-ray diffraction coupled with differential scanning calorimetry (PXRD-DSC), gas adsorption and molecular simulations.

5.
J Am Chem Soc ; 135(46): 17401-7, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24152119

ABSTRACT

MO3 (M = Mo, W) or VI-VI binary compounds are important semiconducting oxides that show great promise for a variety of applications. In an effort to tune and enhance their properties in a systematic manner we have applied a designing strategy to deliberately introduce organic linker molecules in these perovskite-like crystal lattices. This approach has led to a wealth of new hybrid structures built on one-dimensional (1D) and two-dimensional (2D) VI-VI modules. The hybrid semiconductors exhibit a number of greatly improved properties and new functionality, including broad band gap tunability, negative thermal expansion, largely reduced thermal conductivity, and significantly enhanced dielectric constant compared to their MO3 parent phases.

6.
Chem Commun (Camb) ; 49(63): 7055-7, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23811783

ABSTRACT

A microporous cadmium metal organic framework is synthesized and structurally characterized. The material possesses a 3-D framework with a 1-D sinusoidal chain and shows high selectivity for CO2 over N2. The selectivity is attributed to CO2 interacting with two phenyl rings of a V-shaped linker as estimated by the in situ XRD-DSC study.

SELECTION OF CITATIONS
SEARCH DETAIL
...