Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ground Water ; 47(6): 774-85, 2009.
Article in English | MEDLINE | ID: mdl-19702780

ABSTRACT

Regional mountain block recharge (MBR) is a key component of alluvial basin aquifer systems typical of the western United States. Yet neither water scientists nor resource managers have a commonly available and reasonably invoked quantitative method to constrain MBR rates. Recent advances in landscape-scale ecohydrologic process modeling offer the possibility that meteorological data and land surface physical and vegetative conditions can be used to generate estimates of MBR. A water balance was generated for a temperate 24,600-ha mountain watershed, elevation 1565 to 3207 m, using the ecosystem process model Biome-BGC (BioGeochemical Cycles) (Running and Hunt 1993). Input data included remotely sensed landscape information and climate data generated with the Mountain Climate Simulator (MT-CLIM) (Running et al. 1987). Estimated mean annual MBR flux into the crystalline bedrock terrain is 99,000 m(3) /d, or approximately 19% of annual precipitation for the 2003 water year. Controls on MBR predictions include evapotranspiration (radiation limited in wet years and moisture limited in dry years), soil properties, vegetative ecotones (significant at lower elevations), and snowmelt (dominant recharge process). The ecohydrologic model is also used to investigate how climatic and vegetative controls influence recharge dynamics within three elevation zones. The ecohydrologic model proves useful for investigating controls on recharge to mountain blocks as a function of climate and vegetation. Future efforts will need to investigate the uncertainty in the modeled water balance by incorporating an advanced understanding of mountain recharge processes, an ability to simulate those processes at varying scales, and independent approaches to calibrating MBR estimates.


Subject(s)
Groundwater , Models, Theoretical , Calibration , Ecosystem , Environmental Monitoring , Montana , Soil , United States , Water Movements
2.
Ground Water ; 45(6): 795-7, 2007.
Article in English | MEDLINE | ID: mdl-17973758

ABSTRACT

Hydrogeologic research often involves obtaining water quality samples in field settings without vehicle access. Such conditions often require the use of a sampling pump. Researchers at The University of Montana have been using a handheld peristaltic pump powered by a rechargeable variable-speed drill. This Montana Drill Pump (MDP) is highly portable and can be inexpensively built for about $225 to $295 (US). Over the last two decades, the pump has been used to sample and filter (as appropriate) surface water and ground water for analyses of general inorganic and organic chemistry, stable and radioactive isotopes, pathogens, and trace pharmaceuticals and to develop small-diameter wells and sample suction lysimeters. The MDP provides researchers and educators with an economical tool to pump water in classrooms, laboratories, and field settings.


Subject(s)
Environmental Monitoring/instrumentation , Water Pollutants/analysis , Water Supply/analysis , Environmental Monitoring/economics , Environmental Monitoring/methods , Montana , Reproducibility of Results
3.
Ground Water ; 45(3): 263-71, 2007.
Article in English | MEDLINE | ID: mdl-17470115

ABSTRACT

Human use of pharmaceuticals results in the excretion and disposal of compounds that become part of municipal and domestic waste streams. On-site waste water disposal and leaking city sewer systems can provide avenues for the migration of effluent to the underlying aquifers. This research assessed the occurrence and persistence of 22 target pharmaceuticals in septic tank effluent and two shallow, coarse-grained aquifers in western Montana. Twelve compounds (acetaminophen, caffeine, codeine, carbamazepine, cotinine, erythromycin-18, nicotine, paraxanthine, ranitidine, sulfamethoxazole, trimethoprim, and warfarin) were detected in a high school septic tank effluent. Three of the 12 compounds, carbamazepine, sulfamethoxazole, and nicotine, were detected in the underlying sand and gravel aquifer after effluent percolation through a 2.0-m thick sand vadose zone. Sampling of a second sand, gravel, and cobble dominated unconfined aquifer, partially overlain by septic systems and a city sewer system, revealed the presence of caffeine, carbamazepine, cotinine, nicotine, and trimethoprim. The presence of carbamazepine and sulfamethoxazole in these aquifers appears to correlate with local usage based on a reported monthly prescription volume. This work highlights the need for expanding geochemical investigations of sewage waste impacted ground water systems to include sampling for selected pharmaceuticals.


Subject(s)
Pharmaceutical Preparations/analysis , Sewage/analysis , Water Pollutants, Chemical/analysis , Water Supply/analysis , Environmental Monitoring , Geography , Industrial Waste/analysis , Montana , Pharmaceutical Preparations/chemistry , Waste Disposal, Fluid , Water Pollutants, Chemical/chemistry
4.
Ground Water ; 40(5): 465, 2002.
Article in English | MEDLINE | ID: mdl-12236258
SELECTION OF CITATIONS
SEARCH DETAIL
...