Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 113(12): 3275-80, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26951671

ABSTRACT

The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY-ssDNA interaction occurs within the assembly via two distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA-gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rim of the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA-UvsX filament.


Subject(s)
Membrane Proteins/chemistry , Membrane Proteins/physiology , Viral Proteins/chemistry , Viral Proteins/physiology , Amino Acid Sequence , Models, Molecular , Molecular Sequence Data , Protein Conformation , Structure-Activity Relationship
2.
Proteins ; 83(8): 1500-12, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26018949

ABSTRACT

Small angle X-ray scattering (SAXS) is an experimental technique used for structural characterization of macromolecules in solution. Here, we introduce BCL::SAXS--an algorithm designed to replicate SAXS profiles from rigid protein models at different levels of detail. We first show our derivation of BCL::SAXS and compare our results with the experimental scattering profile of hen egg white lysozyme. Using this protein we show how to generate SAXS profiles representing: (1) complete models, (2) models with approximated side chain coordinates, and (3) models with approximated side chain and loop region coordinates. We evaluated the ability of SAXS profiles to identify a correct protein topology from a non-redundant benchmark set of proteins. We find that complete SAXS profiles can be used to identify the correct protein by receiver operating characteristic (ROC) analysis with an area under the curve (AUC) > 99%. We show how our approximation of loop coordinates between secondary structure elements improves protein recognition by SAχS for protein models without loop regions and side chains. Agreement with SAXS data is a necessary but not sufficient condition for structure determination. We conclude that experimental SAXS data can be used as a filter to exclude protein models with large structural differences from the native.


Subject(s)
Proteins/chemistry , Scattering, Small Angle , X-Ray Diffraction/methods , Algorithms , Humans , Models, Molecular , ROC Curve
3.
Proteins ; 83(11): 1947-62, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25820805

ABSTRACT

For many membrane proteins, the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold (BioChemical Library membrane protein fold) algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The RMSD100 value of the most accurate model is better than 8 Å for 27, better than 6 Å for 22, and better than 4 Å for 15 of the 29 proteins, demonstrating the algorithms' ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data.


Subject(s)
Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Folding , Electron Spin Resonance Spectroscopy , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Conformation
4.
Proteins ; 82(4): 587-95, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24123100

ABSTRACT

When experimental protein NMR data are too sparse to apply traditional structure determination techniques, de novo protein structure prediction methods can be leveraged. Here, we describe the incorporation of NMR restraints into the protein structure prediction algorithm BCL::Fold. The method assembles discreet secondary structure elements using a Monte Carlo sampling algorithm with a consensus knowledge-based energy function. New components were introduced into the energy function to accommodate chemical shift, nuclear Overhauser effect, and residual dipolar coupling data. In particular, since side chains are not explicitly modeled during the minimization process, a knowledge based potential was created to relate experimental side chain proton-proton distances to Cß -Cß distances. In a benchmark test of 67 proteins of known structure with the incorporation of sparse NMR restraints, the correct topology was sampled in 65 cases, with an average best model RMSD100 of 3.4 ± 1.3 Å versus 6.0 ± 2.0 Å produced with the de novo method. Additionally, the correct topology is present in the best scoring 1% of models in 61 cases. The benchmark set includes both soluble and membrane proteins with up to 565 residues, indicating the method is robust and applicable to large and membrane proteins that are less likely to produce rich NMR datasets.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Proteins/ultrastructure , Algorithms , Models, Chemical , Models, Molecular , Monte Carlo Method , Protein Conformation , Protein Folding , Protein Structure, Secondary , Proteins/metabolism
5.
Structure ; 21(7): 1107-17, 2013 Jul 02.
Article in English | MEDLINE | ID: mdl-23727232

ABSTRACT

Membrane protein structure determination remains a challenging endeavor. Computational methods that predict membrane protein structure from sequence can potentially aid structure determination for such difficult target proteins. The de novo protein structure prediction method BCL::Fold rapidly assembles secondary structure elements into three-dimensional models. Here, we describe modifications to the algorithm, named BCL::MP-Fold, in order to simulate membrane protein folding. Models are built into a static membrane object and are evaluated using a knowledge-based energy potential, which has been modified to account for the membrane environment. Additionally, a symmetry folding mode allows for the prediction of obligate homomultimers, a common property among membrane proteins. In a benchmark test of 40 proteins of known structure, the method sampled the correct topology in 34 cases. This demonstrates that the algorithm can accurately predict protein topology without the need for large multiple sequence alignments, homologous template structures, or experimental restraints.


Subject(s)
Membrane Proteins/chemistry , Algorithms , Databases, Protein , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Monte Carlo Method , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Subunits/chemistry , Sequence Analysis, Protein , Solubility
6.
Proteins ; 81(7): 1127-40, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23349002

ABSTRACT

Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an α-helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 × 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three-state secondary structure prediction, and 94.8% for three-state transmembrane span prediction. These accuracies are comparable to state-of-the-art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org.


Subject(s)
Membrane Proteins/chemistry , Neural Networks, Computer , Protein Structure, Secondary , Proteins/chemistry , Algorithms , Amino Acid Sequence , Databases, Protein , Membrane Proteins/classification , Sequence Alignment , Software
7.
PLoS One ; 7(11): e49240, 2012.
Article in English | MEDLINE | ID: mdl-23173050

ABSTRACT

Computational de novo protein structure prediction is limited to small proteins of simple topology. The present work explores an approach to extend beyond the current limitations through assembling protein topologies from idealized α-helices and ß-strands. The algorithm performs a Monte Carlo Metropolis simulated annealing folding simulation. It optimizes a knowledge-based potential that analyzes radius of gyration, ß-strand pairing, secondary structure element (SSE) packing, amino acid pair distance, amino acid environment, contact order, secondary structure prediction agreement and loop closure. Discontinuation of the protein chain favors sampling of non-local contacts and thereby creation of complex protein topologies. The folding simulation is accelerated through exclusion of flexible loop regions further reducing the size of the conformational search space. The algorithm is benchmarked on 66 proteins with lengths between 83 and 293 amino acids. For 61 out of these proteins, the best SSE-only models obtained have an RMSD100 below 8.0 Å and recover more than 20% of the native contacts. The algorithm assembles protein topologies with up to 215 residues and a relative contact order of 0.46. The method is tailored to be used in conjunction with low-resolution or sparse experimental data sets which often provide restraints for regions of defined secondary structure.


Subject(s)
Algorithms , Computational Biology/methods , Proteins/chemistry , Benchmarking , Humans , Models, Molecular , Monte Carlo Method , Protein Structure, Secondary , Quality Control
8.
PLoS One ; 7(11): e49242, 2012.
Article in English | MEDLINE | ID: mdl-23173051

ABSTRACT

The topology of most experimentally determined protein domains is defined by the relative arrangement of secondary structure elements, i.e. α-helices and ß-strands, which make up 50-70% of the sequence. Pairing of ß-strands defines the topology of ß-sheets. The packing of side chains between α-helices and ß-sheets defines the majority of the protein core. Often, limited experimental datasets restrain the position of secondary structure elements while lacking detail with respect to loop or side chain conformation. At the same time the regular structure and reduced flexibility of secondary structure elements make these interactions more predictable when compared to flexible loops and side chains. To determine the topology of the protein in such settings, we introduce a tailored knowledge-based energy function that evaluates arrangement of secondary structure elements only. Based on the amino acid C(ß) atom coordinates within secondary structure elements, potentials for amino acid pair distance, amino acid environment, secondary structure element packing, ß-strand pairing, loop length, radius of gyration, contact order and secondary structure prediction agreement are defined. Separate penalty functions exclude conformations with clashes between amino acids or secondary structure elements and loops that cannot be closed. Each individual term discriminates for native-like protein structures. The composite potential significantly enriches for native-like models in three different databases of 10,000-12,000 protein models in 80-94% of the cases. The corresponding application, "BCL::ScoreProtein," is available at www.meilerlab.org.


Subject(s)
Computational Biology/methods , Models, Molecular , Proteins/chemistry , Algorithms , Bayes Theorem , Protein Structure, Secondary , Protein Structure, Tertiary , Rotation , Thermodynamics
9.
J Struct Biol ; 175(3): 264-76, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21565271

ABSTRACT

Cryo-electron microscopy (cryoEM) can visualize large macromolecular assemblies at resolutions often below 10Å and recently as good as 3.8-4.5 Å. These density maps provide important insights into the biological functioning of molecular machineries such as viruses or the ribosome, in particular if atomic-resolution crystal structures or models of individual components of the assembly can be placed into the density map. The present work introduces a novel algorithm termed BCL::EM-Fit that accurately fits atomic-detail structural models into medium resolution density maps. In an initial step, a "geometric hashing" algorithm provides a short list of likely placements. In a follow up Monte Carlo/Metropolis refinement step, the initial placements are optimized by their cross correlation coefficient. The resolution of density maps for a reliable fit was determined to be 10 Å or better using tests with simulated density maps. The algorithm was applied to fitting of capsid proteins into an experimental cryoEM density map of human adenovirus at a resolution of 6.8 and 9.0 Å, and fitting of the GroEL protein at 5.4 Å. In the process, the handedness of the cryoEM density map was unambiguously identified. The BCL::EM-Fit algorithm offers an alternative to the established Fourier/Real space fitting programs. BCL::EM-Fit is free for academic use and available from a web server or as downloadable binary file at http://www.meilerlab.org.


Subject(s)
Cryoelectron Microscopy/methods , Adenoviridae/ultrastructure , Algorithms , Monte Carlo Method
10.
Article in English | MEDLINE | ID: mdl-27818847

ABSTRACT

Clustering algorithms are used as data analysis tools in a wide variety of applications in Biology. Clustering has become especially important in protein structure prediction and virtual high throughput screening methods. In protein structure prediction, clustering is used to structure the conformational space of thousands of protein models. In virtual high throughput screening, databases with millions of drug-like molecules are organized by structural similarity, e.g. common scaffolds. The tree-like dendrogram structure obtained from hierarchical clustering can provide a qualitative overview of the results, which is important for focusing detailed analysis. However, in practice it is difficult to relate specific components of the dendrogram directly back to the objects of which it is comprised and to display all desired information within the two dimensions of the dendrogram. The current work presents a hierarchical agglomerative clustering method termed bcl::Cluster. bcl::Cluster utilizes the Pymol Molecular Graphics System to graphically depict dendrograms in three dimensions. This allows simultaneous display of relevant biological molecules as well as additional information about the clusters and the members comprising them.

11.
J Comput Biol ; 17(2): 153-68, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19772383

ABSTRACT

Knowledge of all residue-residue contacts within a protein allows determination of the protein fold. Accurate prediction of even a subset of long-range contacts (contacts between amino acids far apart in sequence) can be instrumental for determining tertiary structure. Here we present BCL::Contact, a novel contact prediction method that utilizes artificial neural networks (ANNs) and specializes in the prediction of medium to long-range contacts. BCL::Contact comes in two modes: sequence-based and structure-based. The sequence-based mode uses only sequence information and has individual ANNs specialized for helix-helix, helix-strand, strand-helix, strand-strand, and sheet-sheet contacts. The structure-based mode combines results from 32-fold recognition methods with sequence information to a consensus prediction. The two methods were presented in the 6(th) and 7(th) Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiments. The present work focuses on elucidating the impact of fold recognition results onto contact prediction via a direct comparison of both methods on a joined benchmark set of proteins. The sequence-based mode predicted contacts with 42% accuracy (7% false positive rate), while the structure-based mode achieved 45% accuracy (2% false positive rate). Predictions by both modes of BCL::Contact were supplied as input to the protein tertiary structure prediction program Rosetta for a benchmark of 17 proteins with no close sequence homologs in the protein data bank (PDB). Rosetta created higher accuracy models, signified by an improvement of 1.3 A on average root mean square deviation (RMSD), when driven by the predicted contacts. Further, filtering Rosetta models by agreement with the predicted contacts enriches for native-like fold topologies.


Subject(s)
Caspase 7/chemistry , Models, Molecular , Protein Folding , Sequence Analysis, Protein , Algorithms , Computer Simulation , Humans , Neural Networks, Computer , Protein Conformation
12.
J Mol Model ; 15(9): 1093-108, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19234730

ABSTRACT

The burial of hydrophobic amino acids in the protein core is a driving force in protein folding. The extent to which an amino acid interacts with the solvent and the protein core is naturally proportional to the surface area exposed to these environments. However, an accurate calculation of the solvent-accessible surface area (SASA), a geometric measure of this exposure, is numerically demanding as it is not pair-wise decomposable. Furthermore, it depends on a full-atom representation of the molecule. This manuscript introduces a series of four SASA approximations of increasing computational complexity and accuracy as well as knowledge-based environment free energy potentials based on these SASA approximations. Their ability to distinguish correctly from incorrectly folded protein models is assessed to balance speed and accuracy for protein structure prediction. We find the newly developed "Neighbor Vector" algorithm provides the most optimal balance of accurate yet rapid exposure measures.


Subject(s)
Computer Simulation , Models, Chemical , Protein Conformation , Proteins/chemistry , Algorithms , Amino Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Solvents/chemistry , Surface Properties
13.
Proteins ; 76(1): 13-29, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19089980

ABSTRACT

The concept of hydrophobicity is critical to our understanding of the principles of membrane protein (MP) folding, structure, and function. In the last decades, several groups have derived hydrophobicity scales using both experimental and statistical methods that are optimized to mimic certain natural phenomena as closely as possible. The present work adds to this toolset the first knowledge-based scale that unifies the characteristics of both alpha-helical and beta-barrel multispan MPs. This unified hydrophobicity scale (UHS) distinguishes between amino acid preference for solution, transition, and trans-membrane states. The scale represents average hydrophobicity values of amino acids in folded proteins, irrespective of their secondary structure type. We furthermore present the first knowledge-based hydrophobicity scale for mammalian alpha-helical MPs (mammalian hydrophobicity scale--MHS). Both scales are particularly useful for computational protein structure elucidation, for example as input for machine learning techniques, such as secondary structure or trans-membrane span prediction, or as reference energies for protein structure prediction or protein design. The knowledge-based UHS shows a striking similarity to a recent experimental hydrophobicity scale introduced by Hessa and coworkers (Hessa T et al., Nature 2007;450:U1026-U1032). Convergence of two very different approaches onto similar hydrophobicity values consolidates the major differences between experimental and knowledge-based scales observed in earlier studies. Moreover, the UHS scale represents an accurate absolute free energy measure for folded, multispan MPs--a feature that is absent from many existing scales. The utility of the UHS was demonstrated by analyzing a series of diverse MPs. It is further shown that the UHS outperforms nine established hydrophobicity scales in predicting trans-membrane spans along the protein sequence. The accuracy of the present hydrophobicity scale profits from the doubling of the number of integral MPs in the PDB over the past four years. The UHS paves the way for an increased accuracy in the prediction of trans-membrane spans.


Subject(s)
Amino Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Membrane Proteins/chemistry , Animals , Artificial Intelligence , Databases, Protein , Humans , Mammals , Models, Molecular , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...