Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes ; 48(10): 2099-102, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10512380

ABSTRACT

The aim of this study was to investigate whether mutations in hepatocyte nuclear factor (HNF)-4gamma, a transcription factor homologous to HNF-4alpha, contribute to the etiology of early-onset type 2 diabetes. Linkage between diabetes and two polymorphic markers at the HNF-4gamma locus (D8S286 and D8S548) was evaluated in 32 multigenerational families with early-onset autosomal-dominant type 2 diabetes unlinked to known maturity-onset diabetes of the young genes. Total logarithm of odds (LOD) scores were strongly negative (-50.3 at D8S286 and -46.2 at D8S548), but linkage could not be excluded in 15 families having LOD scores >-2.0. To screen these pedigrees for HNF-4gamma mutations, the gene structure was defined. Because reverse transcriptase-polymerase chain reaction experiments indicated that the first 1,674 bp of the published cDNA sequence (3,248 bp) were a cloning artifact, the correct cDNA sequence was determined by 5' rapid amplification of cDNA ends (RACE) and primer extension assay. Based on the new cDNA sequence (1,731 bp), 11 exons were found. After screening the 5' flanking region and all coding exons for mutations, we identified several polymorphisms, one of which affected the amino acid sequence (M190I). However, no mutations segregating with diabetes could be found in these families. We conclude that genetic variability in the HNF-4gamma gene is unlikely to play a major role in the etiology of early-onset autosomal-dominant type 2 diabetes.


Subject(s)
DNA-Binding Proteins/genetics , Diabetes Mellitus, Type 2/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Base Sequence , DNA, Complementary/chemistry , Exons , Genetic Linkage , Genetic Testing , Hepatocyte Nuclear Factor 3-gamma , Humans , Introns , Lod Score , Molecular Sequence Data , Mutation , Promoter Regions, Genetic , Random Amplified Polymorphic DNA Technique
2.
Diabetes ; 48(11): 2246-51, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10535461

ABSTRACT

To replicate the recent finding of a type 2 diabetes locus (NIDDM2) on 12q, families segregating early-onset autosomal-dominant type 2 diabetes were screened for linkage. Included were 26 Caucasian and 6 non-Caucasian pedigrees with an average age at diabetes diagnosis of 37 +/- 18 years. Affected (n = 233) and nonaffected (n = 152) family members were genotyped for 17 markers covering 90 cM on chromosome 12q. While no evidence for linkage was detected at the NIDDM2 locus, a linkage peak was observed 50 cM centromeric to NIDDM2 at markers D12S375 and D12S1052. In a nonparametric analysis, the Z(all) score was 2.9 (P = 0.015) at D12S375, and increased to 3.8 (P = 0.007) among Caucasian families. Further increase in significance was observed in pedigrees with poor insulin response, with a maximum Z(all) of 6.2 (P = 0.002) at D12S375. Suggestive evidence of linkage was also detected by the parametric analysis, with the heterogeneity logarithm of odds score peaking at 2.5 (alpha = 0.15) between D12S375 and D12S1052. In summary, our data indicate that the NIDDM2 locus does not play a major role in early-onset autosomal-dominant type 2 diabetes. Rather, they strongly suggest that a previously undetected type 2 diabetes locus exists 50 cM from NIDDM2 on 12q.


Subject(s)
Centromere/genetics , Chromosomes, Human, Pair 12 , Diabetes Mellitus, Type 2/genetics , Adult , Age of Onset , Black People/genetics , Chromosome Mapping , Female , Genes, Dominant , Genetic Linkage , Genetic Markers , Genotype , Hispanic or Latino/genetics , Humans , Lod Score , Male , Pedigree , United States , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...