Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 526(1-2): 291-299, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28434935

ABSTRACT

The unique colloidal properties of cellulose nanofibers (CNF), makes CNF a very interesting new excipient in pharmaceutical formulations, as CNF in combination with some poorly-soluble drugs can create nanofoams with closed cells. Previous nanofoams, created with the model drug indomethacin, demonstrated a prolonged release compared to films, owing to the tortuous diffusion path that the drug needs to take around the intact air-bubbles. However, the nanofoam was only obtained at a relatively low drug content of 21wt% using fixed processing parameters. Herein, the effect of indomethacin content and processing parameters on the foaming properties was analysed. Results demonstrate that a certain amount of dissolved drug is needed to stabilize air-bubbles. At the same time, larger fractions of dissolved drug promote coarsening/collapse of the wet foam. The pendant drop/bubble profile tensiometry was used to verify the wet-foam stability at different pHs. The pH influenced the amount of solubilized drug and the processing-window was very narrow at high drug loadings. The results were compared to real foaming-experiments and solid state analysis of the final cellular solids. The parameters were assembled into a processing chart, highlighting the importance of the right combination of processing parameters (pH and time-point of pH adjustment) in order to successfully prepare cellular solid materials with up to 46 wt% drug loading.


Subject(s)
Cellulose/chemistry , Excipients/chemistry , Indomethacin/chemistry , Nanofibers/chemistry , Chemistry, Pharmaceutical
2.
J Chem Phys ; 124(15): 154905, 2006 Apr 21.
Article in English | MEDLINE | ID: mdl-16674263

ABSTRACT

Atomistic molecular dynamics simulations of a lipid bilayer were performed to calculate the free energy of a trans-membrane pore as a function of its radius. The free energy was calculated as a function of a reaction coordinate using a potential of mean constraint force. The pore radius was then calculated from the reaction coordinate using Monte Carlo particle insertions. The main characteristics of the free energy that comes out of the simulations are a quadratic shape for a radius less than about 0.3 nm, a linear shape for larger radii than this, and a rather abrupt change without local minima or maxima between the two regions. In the outer region, a line tension can be calculated, which is consistent with the experimentally measured values. Further, this line tension can be rationalized and understood in terms of the energetic cost for deforming a part of the lipid bilayer into a hydrophilic pore. The region with small radii can be described and understood in terms of statistical mechanics of density fluctuations. In the region of crossover between a quadratic and linear free energy there was some hysteresis associated with filling and evacuation of the pore with water. The metastable prepore state hypothesized to interpret the experiments was not observed in this region.


Subject(s)
Computer Simulation , Lipid Bilayers/chemistry , Models, Chemical , Thermodynamics , Monte Carlo Method , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...