Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Res ; 28(1): 389, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770938

ABSTRACT

COVID-19 is associated with various neurological symptoms. Serum neurofilament light chain (sNfL) is a robust marker for neuroaxonal injury. Recent studies have shown that elevated levels of sNfL are associated with unfavorable outcome in COVID-19 patients. However, neuroaxonal injury is rare in COVID-19, and renal dysfunction and hypoxia, both of which are known in severe COVID-19, can also increase sNfL levels. Thus, the meaning and mechanisms of sNfL elevation in COVID-19 patients remain unclear. We evaluated sNfL levels in 48 patients with COVID-19 (mean age = 63 years) and correlated them to clinical outcome, the form of oxygen therapy, and creatinine. Levels of sNfL were age adjusted and compared with normal values and z-scores. COVID-19 patients treated with nasal cannula had normal sNfL levels (mean sNfL = 19.6 pg/ml) as well as patients with high-flow treatment (mean sNfL = 40.8 pg/ml). Serum NfL levels were statistically significantly higher in COVID-19 patients treated with mechanical ventilation on intensive care unit (ICU) (mean sNfL = 195.7 pg/ml, p < 0.01). There was a strong correlation between sNfL elevation and unfavorable outcome in COVID-19 patients (p < 0.01). However, serum creatinine levels correlated directly and similarly with sNfL elevation and with unfavorable outcome in COVID-19 patients (p < 0.01). Additionally, multivariate analysis for serum creatinine and sNfL showed that both variables are jointly associated with clinical outcomes. Our results identify renal dysfunction as an important possible confounder for sNfL elevation in COVID-19. Thus, serum creatinine and renal dysfunction should be strongly considered in studies evaluating sNfL as a biomarker in COVID-19.


Subject(s)
COVID-19 , Kidney Diseases , Multiple Sclerosis , Humans , Middle Aged , Creatinine , Intermediate Filaments , Biomarkers , Kidney/physiology
3.
Mol Cell Proteomics ; 14(10): 2550-63, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26139848

ABSTRACT

Analysis of murine cerebrospinal fluid (CSF) by quantitative mass spectrometry is challenging because of low CSF volume, low total protein concentration, and the presence of highly abundant proteins such as albumin. We demonstrate that the CSF proteome of individual mice can be analyzed in a quantitative manner to a depth of several hundred proteins in a robust and simple workflow consisting of single ultra HPLC runs on a benchtop mass spectrometer. The workflow is validated by a comparative analysis of BACE1-/- and wild-type mice using label-free quantification. The protease BACE1 cleaves the amyloid precursor protein (APP) as well as several other substrates and is a major drug target in Alzheimer's disease. We identified a total of 715 proteins with at least 2 unique peptides and quantified 522 of those proteins in CSF from BACE1-/- and wild-type mice. Several proteins, including the known BACE1 substrates APP, APLP1, CHL1 and contactin-2 showed lower abundance in the CSF of BACE1-/- mice, demonstrating that BACE1 substrate identification is possible from CSF. Additionally, ectonucleotide pyrophosphatase 5 was identified as a novel BACE1 substrate and validated in cells using immunoblots and by an in vitro BACE1 protease assay. Likewise, receptor-type tyrosine-protein phosphatase N2 and plexin domain-containing 2 were confirmed as BACE1 substrates by in vitro assays. Taken together, our study shows the deepest characterization of the mouse CSF proteome to date and the first quantitative analysis of the CSF proteome of individual mice. The BACE1 substrates identified in CSF may serve as biomarkers to monitor BACE1 activity in Alzheimer patients treated with BACE inhibitors.


Subject(s)
Amyloid Precursor Protein Secretases/cerebrospinal fluid , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/cerebrospinal fluid , Aspartic Acid Endopeptidases/metabolism , Proteomics/methods , Amyloid Precursor Protein Secretases/genetics , Animals , Aspartic Acid Endopeptidases/genetics , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphoric Diester Hydrolases/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 8/metabolism , Receptors, Cell Surface/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...