Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36293161

ABSTRACT

Severe drought conditions and extreme weather events are increasing worldwide with climate change, threatening the persistence of native plant communities and ecosystems. Many studies have investigated the genomic basis of plant responses to drought. However, the extent of this research throughout the plant kingdom is unclear, particularly among species critical for the sustainability of natural ecosystems. This study aimed to broaden our understanding of genome-to-phenome (G2P) connections in drought-stressed plants and identify focal taxa for future research. Bioinformatics pipelines were developed to mine and link information from databases and abstracts from 7730 publications. This approach identified 1634 genes involved in drought responses among 497 plant taxa. Most (83.30%) of these species have been classified for human use, and most G2P interactions have been described within model organisms or crop species. Our analysis identifies several gaps in G2P research literature and database connectivity, with 21% of abstracts being linked to gene and taxonomy data in NCBI. Abstract text mining was more successful at identifying potential G2P pathways, with 34% of abstracts containing gene, taxa, and phenotype information. Expanding G2P studies to include non-model plants, especially those that are adapted to drought stress, will help advance our understanding of drought responsive G2P pathways.


Subject(s)
Droughts , Ecosystem , Humans , Plants/genetics , Adaptation, Physiological/genetics , Phenomics , Stress, Physiological/genetics
2.
Genes (Basel) ; 12(2)2021 02 20.
Article in English | MEDLINE | ID: mdl-33672535

ABSTRACT

There is a gap in the conceptual framework linking genes to phenotypes (G2P) for non-model organisms, as most non-model organisms do not yet have genomic resources readily available. To address this, researchers often perform literature reviews to understand G2P linkages by curating a list of likely gene candidates, hinging upon other studies already conducted in closely related systems. Sifting through hundreds to thousands of articles is a cumbersome task that slows down the scientific process and may introduce bias into a study. To fill this gap, we created G2PMineR, a free and open source literature mining tool developed specifically for G2P research. This R package uses automation to make the G2P review process efficient and unbiased, while also generating hypothesized associations between genes and phenotypes within a taxonomical framework. We applied the package to a literature review for drought-tolerance in plants. The analysis provides biologically meaningful results within the known framework of drought tolerance in plants. Overall, the package is useful for conducting literature reviews for genome to phenome projects, and also has broad appeal to scientists investigating a wide range of study systems as it can conduct analyses under the auspices of three different kingdoms (Plantae, Animalia, and Fungi).


Subject(s)
Computational Biology , Genome , Genomics/methods , Genotype , Phenomics/methods , Phenotype , Software , Animals , Computational Biology/methods , Data Mining/methods , Databases, Genetic , Humans , Plants/genetics , Web Browser
SELECTION OF CITATIONS
SEARCH DETAIL
...