Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Oncol ; 13: 1091274, 2023.
Article in English | MEDLINE | ID: mdl-37007076

ABSTRACT

Introduction: Wilms Tumor (WT), or nephroblastoma, is the most common pediatric kidney cancer. Most WTs display a "favorable" triphasic histology, in which the tumor is comprised of blastemal, stromal, and epithelial cell types. Blastemal predominance after neoadjuvant chemotherapy or diffuse anaplasia ("unfavorable" histology; 5-8%) portend a worse prognosis. Blastema likely provide the putative cancer stem cells (CSCs), which retain molecular and histologic features characteristic of nephron progenitor cells (NPCs), within WTs. NPCs arise in the metanephric mesenchyme (MM) and populate the cap mesenchyme (CM) in the developing kidney. WT blastemal cells, like NPCs, similarly express markers, SIX2 and CITED1. Tumor xenotransplantation is currently the only dependable method to propagate tumor tissue for research or therapeutic screening, since efforts to culture tumors in vitro as monolayers have invariably failed. Therefore, a critical need exists to propagate WT stem cells rapidly and efficiently for high-throughput, real-time drug screening. Methods: Previously, our lab developed niche conditions that support the propagation of murine NPCs in culture. Applying similar conditions to WTs, we assessed our ability to maintain key NPC "stemness" markers, SIX2, NCAM, and YAP1, and CSC marker ALDHI in cells from five distinct untreated patient tumors. Results: Accordingly, our culture conditions maintained the expression of these markers in cultured WT cells through multiple passages of rapidly dividing cells. Discussion: These findings suggest that our culture conditions sustain the WT blastemal population, as previously shown for normal NPCs. As a result, we have developed new WT cell lines and a multi-passage in vitro model for studying the blastemal lineage/CSCs in WTs. Furthermore, this system supports growth of heterogeneous WT cells, upon which potential drug therapies could be tested for efficacy and resistance.

2.
Eur J Immunol ; 37(4): 1022-32, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17357110

ABSTRACT

Ikaros is a transcriptional regulator whose function is essential for B cell development. It is expressed in the hematopoietic stem cell (HSC) through the mature B cell stage. Using genetically engineered mice in which the endogenous Ikaros gene is disrupted, it has been shown that a lack of Ikaros leads to a block in B cell development and that its severe diminution results in a hyperresponsive B cell compartment. Ikaros expression within the HSC has led to speculation as to whether the role of Ikaros in B cell biology is largely accomplished prior to B cell specification. In addition, widespread expression of Ikaros in hematopoietic cells leads to the possibility that some or all of the observed defects are not B cell autonomous. In this report, we demonstrate that over-expression of a dominant interfering Ikaros isoform exclusively in B cells has profound effects on mature B cell function. We provide evidence that continued high-level expression of Ikaros is essential for homeostasis of peripheral lymphocytes and maintenance of B cell tolerance. We also show that deregulation of Ikaros activity does not rapidly result in B cell leukemogenesis as it does with 100% penetrance within the T cell lineage.


Subject(s)
Autoantibodies/biosynthesis , Autoimmune Diseases/genetics , DNA/metabolism , Ikaros Transcription Factor/genetics , Leukemia, B-Cell/metabolism , Animals , Autoimmune Diseases/immunology , Cells, Cultured , DNA-Binding Proteins/metabolism , Humans , Ikaros Transcription Factor/biosynthesis , Ikaros Transcription Factor/physiology , Leukemia, B-Cell/genetics , Leukemia, B-Cell/immunology , Mice , Mice, Transgenic , Protein Binding/genetics , Protein Binding/immunology , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Protein Isoforms/physiology
SELECTION OF CITATIONS
SEARCH DETAIL