Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(27): 6610-6621, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38924509

ABSTRACT

The effects of alkyl chain length on the crystallization kinetics and ion mobility of tetraalkylphosphonium, [P666,n][TFSI], (n = 2, 6, 8, and 12) ionic liquids were studied by differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS) over a wide temperature range. The liquid-glass transition temperature (Tg) and ion dynamics examined over a broad T range were almost insensitive to structural modifications of the phosphonium cation. In contrast, the crystallization kinetics were strongly affected by the length of the fourth alkyl chain. Furthermore, the thermal history of the sample (cold vs melt crystallization) significantly impacted the crystallization rate. It has been found that the nature of crystallization phenomena is the same across the homologous series, while the kinetic aspect differs. Finally, electric conductivity in supercooled liquid and crystalline solid phases was measured for all samples, revealing significant ionic conductivity, largely independent of the cation structure.

2.
J Phys Chem B ; 128(20): 5118-5126, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38742730

ABSTRACT

A reversible, first-order transition separating two liquid phases of a single-component material is a fascinating yet poorly understood phenomenon. Here, we investigate the liquid-liquid transition (LLT) ability of two tetraalkylphosphonium ionic liquids (ILs), [P666,14]Cl and [P666,14][1,2,4-triazolide], using differential scanning calorimetry and dielectric spectroscopy. The latter technique also allowed us to study the LLT at elevated pressure. We found that cooling below 205 K transforms [P666,14]Cl and [P666,14][Trz] from one liquid state (liquid 1) to another (the self-assembled liquid 2), while the latter facilitates the charge transport decoupled from structural dynamics. In contrast to temperature, pressure was found to play an essential role in the self-organization of a liquid 2 phase, resulting in different time scales of charge transport for rapidly and slowly compressed samples. Furthermore, τσ(PLL) was found to be much shorter than τσ(TLL, P=atm), which constitutes the first example of non-isochronal behavior of charge transport at LLT. In turn, dielectric studies through the liquid-glass transition revealed the non-monotonic behavior of τσ at elevated pressure for [P666,14]Cl, while for [P666,14][Trz] τσ(Pg) was almost constant. These results highlight the diversity of liquid-liquid transition features within the class of phosphonium ionic liquids.

3.
J Phys Chem B ; 128(20): 5109-5117, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38718191

ABSTRACT

In this study, we employed dielectric spectroscopy to investigate the effect of temperature and pressure on the ion dynamics of phosphonium ionic liquids (ILs) differing by the length of an alkyl chain, [P666,n][TFSI] (n = 2, 6, 8, 12). We found that both temperature and pressure dependence of dc-conductivity (σdc) determined for all examined ILs herein exhibit unique characteristics, unusual for aprotic ILs. Two regions differing by ion self-organization have been identified from the derivative analysis of σdc(T-1) data. On the other hand, isothermal measurements performed at elevated pressure revealed a unique concave-convex character of σdc(P) dependences, resulting in a clear minimum in the pressure behavior of activation volume. Such an inflection point characterizing the pressure dependence of σdc in [P666,n][TFSI] ILs can be considered an inherent feature of ion dynamics governed by structural self-assembly. Our results offer a unique perspective to link the ion mobility at various T-P conditions to the nanostructural organization of ionic systems.

4.
Phys Rev E ; 109(3-1): 034608, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632762

ABSTRACT

The contribution of cross- and self-correlations to the dielectric and light-scattering spectra of supercooled polar glass formers has recently become a most challenging problem. Herein, we employ dielectric spectroscopy, depolarized dynamic light scattering (DDLS), and rheology to thoroughly examine the dynamics of van der Waals liquid 1,2-Diphenylvinylene. Carbonate (DVC), which is a polar counterpart of canonical glass former ortho-Terphenyl (OTP). We show that the light-scattering data correspond well with the dielectric permittivity function over a wide T range. This pattern is very different from the peaks' separation ω_{max}^{DDLS}/ω_{max}^{BDS}=3.7 reported recently for tributyl phosphate (TBP), despite the same dielectric characteristics of these two glass formers (ß_{KWW}=0.75, Δɛ=20 for both TBP and DVC; KWW stands for Kohlrausch-Williams-Watts). This indicates different influence of orientational correlations in both methods for these two systems. We also show the results of the computer simulations of the model, polar molecules, which clearly indicate that the contribution of the cross-term to the correlation function probed in the DDLS experiment can be significant.

5.
Sci Rep ; 13(1): 3040, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36810358

ABSTRACT

Although the first-order liquid-liquid phase transition (LLT) has been reported to exist in various systems (i.e., phosphorus, silicon, water, triphenyl phosphite, etc.), it is still one of the most challenging problems in the field of physical science. Recently, we found that this phenomenon occurs in the family of trihexyl(tetradecyl)phosphonium [P666,14]+ based ionic liquids (ILs) with different anions (Wojnarowska et al in Nat Commun 13:1342, 2022). To understand the molecular structure-property relationships governing LLT, herein, we examine ion dynamics of two other quaternary phosphonium ILs containing long alkyl chains in cation and anion. We found that IL with the anion containing branched -O-(CH2)5-CH3 side chains does not reveal any signs of LLT, while IL with shorter alkyl chains in the anion brings a hidden LLT, i.e., it overlaps with the liquid-glass transition. Ambient pressure dielectric and viscosity measurements revealed a peculiar behavior of ion dynamics near Tg for IL with hidden LLT. Moreover, high-pressure studies have shown that IL with hidden LLT has relatively strong pressure sensitivity compared to the one without first-order phase transition. At the same time, the former exposes the inflection point indicating the concave-convex character of logτσ(P) dependences.

6.
Sci Rep ; 11(1): 22142, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34772980

ABSTRACT

The studies of molecular dynamics in the vicinity of liquid-glass transition are an essential part of condensed matter physics. Various experimental techniques are usually applied to understand different aspects of molecular motions, i.e., nuclear magnetic resonance (NMR), photon correlation spectroscopy (PCS), mechanical shear relaxation (MR), and dielectric spectroscopy (DS). Universal behavior of molecular dynamics, reflected in the invariant distribution of relaxation times for different polar and weekly polar glass-formers, has been recently found when probed by NMR, PCS, and MR techniques. On the other hand, the narrow dielectric permittivity function ε*(f) of polar materials has been rationalized by postulating that it is a superposition of a Debye-like peak and a broader structural relaxation found in NMR, PCS, and MR. Herein, we show that dielectric permittivity representation ε*(f) reveals details of molecular motions being undetectable in the other experimental methods. Herein we propose a way to resolve this problem. First, we point out an unresolved Johari-Goldstein (JG) ß-relaxation is present nearby the α-relaxation in these polar glass-formers. The dielectric relaxation strength of the JG ß-relaxation is sufficiently weak compared to the α-relaxation so that the narrow dielectric frequency dispersion faithfully represents the dynamic heterogeneity and cooperativity of the α-relaxation. However, when the other techniques are used to probe the same polar glass-former, there is reduction of relaxation strength of α-relaxation relative to that of the JG ß relaxation as well as their separation. Consequently the α relaxation appears broader in frequency dispersion when observed by PCS, NMR and MR instead of DS. The explanation is supported by showing that the quasi-universal broadened α relaxation in PCS, NMR and MR is captured by the electric modulus M*(f) = 1/ε*(f) representation of the dielectric measurements of polar and weakly polar glass-formers, and also M*(f) compares favorably with the mechanical shear modulus data G*(f).

7.
J Chem Phys ; 154(4): 044502, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33514081

ABSTRACT

The Adam-Gibbs (AG) model, linking thermodynamics with molecular dynamics of glass-forming liquids, plays a crucial role in the studies of the glass transition phenomenon. We employ this approach to investigate the relationship between ion dynamics and thermodynamics in three imidazolium-based ionic liquids in the current work. We show that the AG relation, -log10σdc ∝ (TSc)-1 (where σdc, T, and Sc denote the dc-conductivity, absolute temperature, and configurational entropy, respectively), does not work when the whole supercooled liquid state is considered. Meanwhile, a linear relationship between -log10σdc and (TSe)-1 (where Se denotes the excess entropy) was observed in the entire supercooled range. On the other hand, the generalized AG model log10σdc ∝ (TSc α)-1 with an additional free parameter α successfully describes the relation between σdc and Sc. The determined α values being less than unity indicate that the configurational entropy is insufficient to govern the ion dynamics. Meanwhile, we found a systematical decrease in α with the elongation of the alkyl chain attached to the imidazolium ring.

8.
Phys Rev E ; 101(3-1): 032606, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32289964

ABSTRACT

Segmental dynamics is considered as a major factor governing ionic conductivity of polymerized ionic liquids (PILs), envisioned as potential electrolytes in fuel cells and batteries. Our dielectric studies performed in T-P thermodynamic space on ionene, composed of the positively charged polymer backbone and freely moving anions, indicate that other relaxation modes, completely ignored so far, can affect the charge transport in PILs as well. We found that fast mobility manifested by a secondary ß process promotes segmental dynamics and thereby increases ionic conductivity making the studied material a first coupled PIL of superionic properties. The molecular mechanism underlying such a ß process has been identified as Johari-Goldstein relaxation giving experimental proof that fast secondary relaxations of intermolecular origin exist also in PILs and thereby reveal a universal character.

9.
Phys Chem Chem Phys ; 22(17): 9257-9261, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32307500

ABSTRACT

The molecular glass-former and pharmaceutical, prilocaine, distinguishes itself by exhibiting seven general and fundamental dynamic and thermodynamic properties [Z. Wojnarowska, et al., J. Phys. Chem. B, 2015, 39, 12699.], all of which have been explained using the coupling model. What has not been studied before are the changes in properties of the structural α-relaxation of prilocaine when subjected to extreme nano-confinement in spaces with a size of about 1 nm. Recently, Ruis et al. [G. N. Ruiz, et al., Phys. Chem. Chem. Phys., 2019, 21, 15576.] measured the α-relaxation times, τα,conf(T), of prilocaine confined in 1 nm pores of molecular sieves. They found that τα,conf(T) are significantly reduced from those of bulk prilocaine, τα,bulk(T), and assume a weaker temperature dependence. The data in toto pose a challenge for any theory of glass transition to explain quantitatively. The coupling model (CM) was applied to this problem to predict the α-relaxation times of prilocaine when cooperativity is removed, which is expected because only a few prilocaine molecules can fit into the 1 nm pores. The results from the CM are in quantitative agreement with the experimental values of τα,conf(T) and the temperature dependence. The success is nontrivial because no other extant theory can do the same to the best of our knowledge.

10.
J Phys Chem B ; 124(7): 1240-1244, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31999929

ABSTRACT

We examine the density scaling properties of two ionic materials, a classic aprotic low molecular weight ionic liquid, 1-butyl-3-methylimidazolium bis(perfluoroethylsulfonyl)imide ([BMIm][BETI]), and a polymeric ionic liquid, poly(3-methyl-1,2,3-triazolium bis(trifluoromethylsulfonyl)imide) (TPIL). Density scaling is known to apply rigorously to simple liquids lacking specific intermolecular associations such as hydrogen bonds. Previous work has found that ionic liquids conform to density scaling over limited ranges of temperature and pressure. In this work, we find that the dc-conductivity of [BMIm][BETI] accurately scales for density changes of 17%; however, there is a departure from scaling for TPIL for even more modest variations of temperature and pressure. The entropy of both ionic samples conforms to density scaling only if the scaling exponent is allowed to vary linearly with the magnitude of the entropy.

11.
J Chem Phys ; 152(9): 091101, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-33480719

ABSTRACT

In this communication, the Adam-Gibbs model connecting molecular dynamics with configurational entropy is tested for the first time for ionic liquids. For this purpose, we investigate simultaneously the shear viscosity η and configurational entropy Sc of an aprotic ionic liquid: 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIm TFSI). Comparing the Sc data obtained by the combination of Vogel-Fulcher-Tammann and Adam-Gibbs equations to the Sc points determined directly from the calorimetric experiment, good agreement is found in the entire supercooled liquid region. These results indicate the validity of the Adam-Gibbs model in materials with electrostatic interactions being dominated. These important findings not only generalize the applications of the Adam-Gibbs theory but also provide an opportunity to gain insight into the relationship between thermodynamics and molecular dynamics in ionic liquids.

12.
Phys Rev Lett ; 123(12): 125702, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31633969

ABSTRACT

This Letter addresses a fundamental issue of condensed-matter physics, which is the validity of the density-scaling concept. For this purpose, the ambient and high-pressure conductivity measurements of two selected ionic liquids (ILs), with the different contribution of H-bonding interactions, were performed in the dynamic range of 13 orders of magnitude and corresponding to the density changes as large as 20%. All experimental data obtained within one compound are shown to superimpose each other when plotted as a function of ρ^{γ}/T. These results clearly show that for studied ILs the scaling exponent is a state-point-independent parameter that is in odds with the recent findings for van der Waals liquid [Sanz et al., Phys. Rev. Lett. 122, 055501 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.055501].

13.
Eur J Pharm Sci ; 134: 93-101, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30986473

ABSTRACT

In this paper, we investigate the temperature-dependent relaxation dynamics in the glassy and supercooled liquid state of dipolar and ionic eutectic mixtures made of two anesthetic agents (lidocaine and prilocaine) and their hydrochloride salts, respectively. In addition to eutectic phases containing 1:1 and 4:1 mol/mol of LD/PRL and LD-HCl/PRL-HCl, respectively, the relaxation properties of non-eutectic compositions and parent compounds are also studied. We found that electrostatic long-range forces determine strongly the dielectric and mechanical response of eutectic material. As a result of Coulomb interactions between ion pairs, an additional ß-relaxation mode was found in the dielectric spectra of glassy LD-HCl/PRL-HCl mixtures. On the other hand, the studies of relaxation dynamics of ionic and non-ionic mixtures at T > Tg revealed a continuous decrease of both fragility mP and the length scale of dynamic heterogeneity NαB(Tg), with simultaneous growth of Tg, when the electrostatics forces appear. At the same time, we found the charge transport being decoupled from structural dynamics in all studied ionic binary mixtures that is due to the fast proton hopping. However, the efficiency of proton transport is dropping down with an increase of Tg.


Subject(s)
Ionic Liquids/chemistry , Lidocaine, Prilocaine Drug Combination/chemistry , Chemistry, Pharmaceutical , Crystallization , Dielectric Spectroscopy , Lidocaine/chemistry , Prilocaine/chemistry , Protons , Static Electricity , Temperature , Vitrification
14.
J Phys Chem B ; 123(5): 1156-1160, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30615448

ABSTRACT

We present investigations of the charge transport in an ionic glass-former carvedilol dihydrogen phosphate (CP) at various T- P- V thermodynamic conditions in terms of density scaling concept. The studied material was found to reveal superprotonic properties both at ambient and elevated pressure, as proved by the Walden rule. Surprisingly, from the isobaric conductivity data, the relaxation times τσ presented in volume formalism showed no visual evidence of a liquid-glass transition. The different behavior of relaxation dynamics above and below Tg was only revealed from the analysis of log τσ( Vsp) data at isochronal conditions. The τσ experimental data of CP plotted as a function of ( TVγ)-1 satisfy the thermodynamic scaling criterion in the supercooled liquid as well as in the amorphous regime, however with a different γ coefficient (γSL = 1.12; γG = 0.48). Nevertheless, by introducing the idea of fictive temperature Tf, the transport properties of glassy and supercooled Grotthuss-type conductors measured at various T- P points obey the universal scaling with the use of a single γ parameter.

15.
Phys Chem Chem Phys ; 20(43): 27361-27367, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30357184

ABSTRACT

Over the past decade, the formation of pharmaceutical eutectics has become a very attractive strategy to increase the bioavailability of active pharmaceutical ingredients (APIs). A great advantage of a eutectic phase, which can be obtained by simple physical mixing of solid materials, is the possibility to obtain a material with desired physicochemical properties only by varying the molar ratio of the parent components. In this work, we have investigated the ability of two protic ionic liquids (PILs), which are hydrochloride salts of lidocaine and prilocaine, as well as their non-ionic counterparts, to form eutectic mixtures. To gain an insight into the calorimetric properties of the formed dipolar and ionic mixtures, differential scanning calorimetry was employed. The mechanism of formation of deep eutectic mixtures on the molecular level was investigated by ab initio quantum mechanics calculations. The effect of electrostatic interactions on the eutectic transition, glass forming ability and the physical stability of pharmaceutical eutectics was also revealed.


Subject(s)
Chemistry, Pharmaceutical , Static Electricity , Calorimetry , Drug Stability , Ionic Liquids/chemistry , Lidocaine/chemistry , Prilocaine/chemistry
16.
J Phys Chem B ; 121(51): 11511-11519, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29183116

ABSTRACT

Polymerized ionic liquids (PolyILs) are promising candidates for a wide range of technological applications due to their single ion conductivity and good mechanical properties. Tuning the glass transition temperature (Tg) in these materials constitutes a major strategy to improve room temperature conductivity while controlling their mechanical properties. In this work, we show experimental and simulation results demonstrating that in these materials Tg does not follow a universal scaling behavior with the volume of the structural units Vm (including monomer and counterion). Instead, Tg is significantly influenced by the chain flexibility and polymer dielectric constant. We propose a simplified empirical model that includes the electrostatic interactions and chain flexibility to describe Tg in PolyILs. Our model enables design of new functional PolyILs with the desired Tg.

17.
Sci Rep ; 7(1): 7084, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28765639

ABSTRACT

In this paper the relaxation dynamics of ionic glass-former acebutolol hydrochloride (ACB-HCl) is studied as a function of temperature and pressure by using dynamic light scattering and broadband dielectric spectroscopy. These unique experimental data provide the first direct evidence that the decoupling between the charge transport and structural relaxation exists in proton conductors over a wide T-P thermodynamic space, with the time scale of structural relaxation being constant at the liquid-glass transition (τα = 1000 s). We demonstrate that the enhanced proton transport, being a combination of intermolecular H+ hopping between cation and anion as well as tautomerization process within amide moiety of ACB molecule, results in a breakdown of the Stokes-Einstein relation at ambient and elevated pressure with the fractional exponent k being pressure dependent. The dT g /dP coefficient, stretching exponent ßKWW and dynamic modulus E a /ΔV # were found to be the same regardless of the relaxation processes studied. This is in contrast to the apparent activation volume parameter that is different when charge transport and structural dynamics are considered. These experimental results together with theoretical considerations create new ideas to design efficient proton conductors for potential electrochemical applications.

18.
Mol Pharm ; 14(8): 2670-2680, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28692796

ABSTRACT

The aim of this article was to check the physical stability of the amorphous form of probucol at both standard storage and manufacturing conditions. Our studies clearly show that disordered form of the examined, cholesterol lowering, agent stored at ambient pressure does not reveal any tendency toward recrystallization. The physical stability of neat probucol stored at ambient pressure has been investigated (i) at room temperature by means of X-ray diffraction technique (XRD) as well as (ii) at T = 333 K by means of broadband dielectric spectroscopy (BDS). Due to the fact that compression is an important stage of drugs manufacturing we additionally performed physical stability tests of amorphous probucol at elevated pressure. The recrystallization tendency of the examined pharmaceutical has been tracked online from the initial and further up to a few hours after compression by means of the high pressure BDS technique. These experiments indicate that even very small pressure applied during the sample compression immediately induce its recrystallization. Since, the sensitivity on pressure eliminates probucol from the group of physically stable amorphous APIs, its stabilization is required. Taking into account that there are many scientific reports describing the positive effect of coadministration of probucol with the drug atorvastatin, we used the latter as probucol's crystallization inhibitor.


Subject(s)
Atorvastatin/chemistry , Pressure , Probucol/chemistry , Dielectric Spectroscopy , Molecular Dynamics Simulation , Temperature , X-Ray Diffraction
19.
Phys Chem Chem Phys ; 19(21): 14141-14147, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28524925

ABSTRACT

Modern ionic liquids (ILs) are considered green solvents for the future applications due to their inherited advantages and remarkable transport properties. One of the ubiquitous properties of ILs is their intrinsic ionic conductivity. However, understanding of the super-Arrhenius behavior of the ionic conductivity process at elevated pressure still remains elusive and crucial in glass science. In this work, we investigate the ion transport properties of 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide: [C4mim][NTf2], 1-butylimidazolium bis[(trifluoromethyl)-sulfonyl]imide: [C4Him][NTf2] and 1-butylimidazolium hydrogen sulfate: [C4Him][HSO4] ILs in the supercooled liquid state using dielectric spectroscopy at ambient and high pressure. We present the experimental data in the dynamic window of the conductivity formalism to examine the charge transport properties. The frequency-dependent ionic conductivity data have been analyzed using the time-temperature superposition principle. In the Arrhenius diagram, the thermal evolution of the dc-conductivity reveals similar temperature dependence for both protic and aprotic ILs thus making it difficult to distinguish the ion dynamics. However, our results demonstrate the key role of high pressure that unambiguously separates the charge transport properties of protic ILs from aprotic ones through the apparent activation volume parameter. We also highlight that the activation volume can be employed to assess the information connecting the ability of ionic systems to form H-bond networks and the impact of proton transfer involved in the conduction process.

20.
Mol Pharm ; 13(6): 1937-46, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27149568

ABSTRACT

In this article we study the effectiveness of three well-known polymers: inulin, Soluplus, and PVP in stabilizing the amorphous form of nimesulide (NMS) drug. The recrystallization tendency of pure drug as well as measured drug-polymer systems were examined at isothermal conditions by broadband dielectric spectroscopy (BDS) and at nonisothermal conditions by differential scanning calorimetry (DSC). Our investigation has shown that the crystallization half-life time of pure NMS at 328 K is equal to 33 min. We found that this time can be prolonged to 40 years after adding 20% w/w PVP to NMS. This polymer proved to be the best NMS stabilizer, while the worst stabilization effect was exhibited by inulin. Additionally, our DSC, BDS, and FTIR studies indicate that for suppression of NMS recrystallization in the NMS-PVP system, the two mechanisms are responsible: the polymeric steric hindrances and the antiplastization effect exerted by the excipient.


Subject(s)
Polymers/chemistry , Sulfonamides/chemistry , Calorimetry, Differential Scanning/methods , Crystallization/methods , Drug Stability , Excipients/chemistry , Half-Life , Inulin/chemistry , Molecular Dynamics Simulation , Polyethylene Glycols/chemistry , Polyvinyls/chemistry , Pyrrolidines/chemistry , Spectroscopy, Fourier Transform Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...