Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36145957

ABSTRACT

Polyurethane (PU) foams are versatile materials with a broad application range. Their performance is driven by the stoichiometry of polymerization reaction, which has been investigated in several works. However, the analysis was often limited only to selected properties and compared samples differing in apparent density, significantly influencing their performance. In the bigger picture, there is still a lack of comprehensive studies dealing with the stoichiometry impact on PU foams' performance. Herein, flexible PU foams with a similar apparent density but differing in the isocyanate index (IIso) (from 0.80 to 1.20) were prepared. The stoichiometry-structure-performance relationships were investigated considering cellular and chemical structure, as well as the static and dynamic mechanical properties, thermal stability, thermal insulation, and acoustic performance. For IIso of 1.00, the biggest cell diameters of 274 µm were noted, which was 21-25% higher compared to 0.80 and 1.20 values. Increasing IIso reduced open cell content from 83.1 to 22.4%, which, combined with stiffening of structure (rise of modulus from 63 to 2787 kPa) resulting from crosslinking, limited the sound suppression ability around five times. On the other hand, it significantly strengthened the material, increasing tensile and compressive strength 4 and 13 times, respectively. Changes in the foams' performance were also induced by the glass transition temperature shift from 6.1 to 31.7 °C, resulting from a greater extent of urethane groups' generation and additional isocyanate reactions. Generally, the presented work provides important insights into preparing flexible PU foams and could be very useful for the future development of these materials.

2.
Polymers (Basel) ; 14(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36145981

ABSTRACT

Polyurethanes (PU) are widely applied in the industry due to their tunable performance adjusted by changes in the isocyanate index-stoichiometric balance between isocyanate and hydroxyl groups. This balance is affected by the incorporation of modifiers of fillers into the PU matrix and is especially crucial for PU foams due to the additional role of isocyanates-foaming of the material. Despite the awareness of the issue underlined in research works, the contribution of additives into formulations is often omitted, adversely impacting foams' performance. Herein, flexible foamed PU/ground tire rubber (GTR) composites containing 12 different types of modified GTR particles differing by hydroxyl value (LOH) (from 45.05 to 88.49 mg KOH/g) were prepared. The impact of GTR functionalities on the mechanical, thermomechanical, and thermal performance of composites prepared with and without considering the LOH of fillers was assessed. Formulation adjustments induced changes in tensile strength (92-218% of the initial value), elongation at break (78-100%), tensile toughness (100-185%), compressive strength (156-343%), and compressive toughness (166-310%) proportional to the shift of glass transition temperatures (3.4-12.3 °C) caused by the additional isocyanates' reactions yielding structure stiffening. On the other hand, formulation adjustments reduced composites' thermal degradation onset due to the inferior thermal stability of hard segments compared to soft segments. Generally, changes in the composites' performance resulting from formulation adjustments were proportional to the hydroxyl values of GTR, justifying the applied approach.

3.
Materials (Basel) ; 15(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36013863

ABSTRACT

Material innovations in polyurethane (PU) foams should ideally combine performance enhancement, environmental impact limitation, and cost reduction. These goals can be achieved by applying recycled or waste-based materials without broader industrial applications, implicating their low price. Herein, from 5 to 20 parts by weight of ground tire rubber (GTR) particles originated from the recycling of postconsumer car tires were incorporated into a flexible foamed PU matrix as a cost-effective waste-based filler. A two-step prepolymer method of foams manufacturing was applied to maximize the potential of applied formulation changes. The impact of the GTR content on the foams' processing, chemical, and cellular structure, as well as static and dynamic mechanical properties, thermal stability, sound suppression ability, and thermal insulation performance, was investigated. The introduction of GTR caused a beneficial reduction in the average cell diameter, from 263.1 µm to 144.8-188.5 µm, implicating a 1.0-4.3% decrease in the thermal conductivity coefficient. Moreover, due to the excellent mechanical performance of the car tires-the primary application of GTR-the tensile performance of the foams was enhanced despite the disruption of the cellular structure resulting from the competitiveness between the hydroxyl groups of the applied polyols and on the surface of the GTR particles. The tensile strength and elongation at break were increased by 10 and 8% for 20 parts by weight GTR addition. Generally, the presented work indicates that GTR can be efficiently applied as a filler for flexible PU foams, which could simultaneously enhance their performance, reduce costs, and limit environmental impacts due to the application of waste-based material.

SELECTION OF CITATIONS
SEARCH DETAIL
...