Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Sci Rep ; 11(1): 10280, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986430

ABSTRACT

Cubozoan jellyfish are classified as plankton despite the strong swimming and orientation abilities of cubomedusae. How these capabilities could affect cubozoan population structures is poorly understood. Medusae of the cubozoan Copula sivickisi can uniquely attach to surfaces with the sticky pads on their bells. Biophysical modelling was used to investigate the spatial scales of connectivity in a C. sivickisi population. When the medusae were active at night they could maintain their observed distribution on fringing reef if they attached to the reef when the current speed exceeded a moderate threshold. This behaviour facilitated the isolation of a C. sivickisi population on reefs fringing Magnetic Island, Queensland, Australia. Within this distribution, there was considerable within bay retention and medusae rarely travelled > 3 km. The few (< 0.1%) medusae lost from the island habitat were largely advected into open water and away from the mainland coast which lies 8 km from the island. Given that successful emigration is unlikely, the island population probably represents a stock that is ecologically distinct from any mainland populations. The cosmopolitan distribution of C. sivickisi could contain incipient or cryptic species given the small scales of connectivity demonstrated here.


Subject(s)
Behavior, Animal , Cubozoa/physiology , Oceanography , Animals , Coral Reefs , Queensland
3.
Proc Biol Sci ; 286(1897): 20182908, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30963834

ABSTRACT

Understanding processes that drive community recovery are needed to predict ecosystem trajectories and manage for impacts under increasing global threats. Yet, the quantification of community recovery in coral reefs has been challenging owing to a paucity of long-term ecological data and high frequency of disturbances. Here we investigate community re-assembly and the bio-physical drivers that determine the capacity of coral reefs to recover following the 1998 bleaching event, using long-term monitoring data across four habitats in Palau. Our study documents that the time needed for coral reefs to recover from bleaching disturbance to coral-dominated state in disturbance-free regimes is at least 9-12 years. Importantly, we show that reefs in two habitats achieve relative stability to a climax community state within that time frame. We then investigated the direct and indirect effects of drivers on the rate of recovery of four dominant coral groups using a structural equation modelling approach. While the rates of recovery differed among coral groups, we found that larval connectivity and juvenile coral density were prominent drivers of recovery for fast growing Acropora but not for the other three groups. Competitive algae and parrotfish had negative and positive effects on coral recovery in general, whereas wave exposure had variable effects related to coral morphology. Overall, the time needed for community re-assembly is habitat specific and drivers of recovery are taxa specific, considerations that require incorporation into planning for ecosystem management under climate change.


Subject(s)
Anthozoa/physiology , Biodiversity , Climate Change , Coral Reefs , Animals , Anthozoa/growth & development , Larva/growth & development , Larva/physiology , Palau
4.
Mar Pollut Bull ; 137: 509-517, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30503462

ABSTRACT

Microplastics are abundant in semi-enclosed seas, presumably because of local trapping. To investigate this trapping effect, we confronted the SLIM plastic oceanography model with field data of the distribution of microplastics in the Bohai Sea, China. Seven source locations were selected to reveal the fate of plastic debris from industrial and domestic usages. The model predictions compared well with the observed distribution of microplastics, highlighting that most plastics were trapped in the Bohai Sea. The model suggests that microplastics distribution within the Bohai Sea both in the water and on the bottom varies seasonally with wind and currents and depends on a complex interaction between source locations, prevailing hydrodynamic conditions, degradation, settling and resuspension rates. Further field studies are warranted to enable the models to better parameterize the fate of microplastics, and particularly the accumulation zones, in other poorly flushed semi-enclosed seas worldwide, where microplastics should be classified as a persistent pollutant.


Subject(s)
Oceanography/methods , Plastics/analysis , Water Pollutants, Chemical/analysis , China , Hydrodynamics , Models, Theoretical , Oceans and Seas , Seasons , Waste Products , Wind
5.
R Soc Open Sci ; 4(5): 170164, 2017 May.
Article in English | MEDLINE | ID: mdl-28573024

ABSTRACT

The ability of individuals to actively control their movements, especially during the early life stages, can significantly influence the distribution of their population. Most marine turtle species develop oceanic foraging habitats during different life stages. However, flatback turtles (Natator depressus) are endemic to Australia and are the only marine turtle species with an exclusive neritic development. To explain the lack of oceanic dispersal of this species, we predicted the dispersal of post-hatchlings in the Great Barrier Reef (GBR), Australia, using oceanographic advection-dispersal models. We included directional swimming in our models and calibrated them against the observed distribution of post-hatchling and adult turtles. We simulated the dispersal of green and loggerhead turtles since they also breed in the same region. Our study suggests that the neritic distribution of flatback post-hatchlings is favoured by the inshore distribution of nesting beaches, the local water circulation and directional swimming during their early dispersal. This combination of factors is important because, under the conditions tested, if flatback post-hatchlings were entirely passively transported, they would be advected into oceanic habitats after 40 days. Our results reinforce the importance of oceanography and directional swimming in the early life stages and their influence on the distribution of a marine turtle species.

6.
PLoS One ; 10(5): e0124568, 2015.
Article in English | MEDLINE | ID: mdl-25951344

ABSTRACT

Here we utilize a combination of genetic data, oceanographic data, and local ecological knowledge to assess connectivity patterns of the ornate spiny lobster Panulirus ornatus (Fabricius, 1798) in the South-East Asian archipelago from Vietnam to Australia. Partial mitochondrial DNA control region and 10 polymorphic microsatellites did not detect genetic structure of 216 wild P. ornatus samples from Australia, Indonesia and Vietnam. Analyses show no evidence for genetic differentiation among populations (mtDNA control region sequences ΦST = -0.008; microsatellite loci FST = 0.003). A lack of evidence for regional or localized mtDNA haplotype clusters, or geographic clusters of microsatellite genotypes, reveals a pattern of high gene flow in P. ornatus throughout the South-East Asian Archipelago. This lack of genetic structure may be due to the oceanography-driven connectivity of the pelagic lobster larvae between spawning grounds in Papua New Guinea, the Philippines and, possibly, Indonesia. The connectivity cycle necessitates three generations. The lack of genetic structure of P. ornatus population in the South-East Asian archipelago has important implications for the sustainable management of this lobster in that the species within the region needs to be managed as one genetic stock.


Subject(s)
DNA, Mitochondrial/analysis , Palinuridae/classification , Palinuridae/genetics , Animals , Asia, Southeastern , Gene Flow , Genetic Variation , Genetics, Population , Larva/classification , Larva/genetics , Larva/physiology , Microsatellite Repeats , Phylogeny
7.
J R Soc Interface ; 11(98): 20140209, 2014 Sep 06.
Article in English | MEDLINE | ID: mdl-24966233

ABSTRACT

A predictive model of the fate of coral reef fish larvae in a reef system is proposed that combines the oceanographic processes of advection and turbulent diffusion with the biological process of horizontal swimming controlled by olfactory and auditory cues within the timescales of larval development. In the model, auditory cues resulted in swimming towards the reefs when within hearing distance of the reef, whereas olfactory cues resulted in the larvae swimming towards the natal reef in open waters by swimming against the concentration gradients in the smell plume emanating from the natal reef. The model suggested that the self-seeding rate may be quite large, at least 20% for the larvae of rapidly developing reef fish species, which contrasted with a self-seeding rate less than 2% for non-swimming coral larvae. The predicted self-recruitment rate of reefs was sensitive to a number of parameters, such as the time at which the fish larvae reach post-flexion, the pelagic larval duration of the larvae, the horizontal turbulent diffusion coefficient in reefal waters and the horizontal swimming behaviour of the fish larvae in response to auditory and olfactory cues, for which better field data are needed. Thus, the model suggested that high self-seeding rates for reef fish are possible, even in areas where the 'sticky water' effect is minimal and in the absence of long-term trapping in oceanic fronts and/or large-scale oceanic eddies or filaments that are often argued to facilitate the return of the larvae after long periods of drifting at sea.


Subject(s)
Anthozoa/physiology , Coral Reefs , Fishes/physiology , Animals , Behavior, Animal , Hearing , Larva/physiology , Models, Theoretical , Oceanography , Smell , Swimming , Water Movements
8.
PLoS One ; 7(11): e50998, 2012.
Article in English | MEDLINE | ID: mdl-23209842

ABSTRACT

Reproduction and recruitment are key processes that replenish marine populations. Here we use the Palau archipelago, in the western Pacific Ocean, as a case study to examine scales of connectivity and to determine whether an oceanographic model, incorporating the complex reef architecture, is a useful predictor of coral recruitment. We tested the hypothesis that the reefs with the highest retention also had the highest densities of juvenile coral density from 80 field sites. Field comparisons showed a significant correlation between the densities of juvenile Acropora colonies and total larval recruitment derived from the model (i.e., calculated as the sum of the densities of larvae that self-seeded and recruited from the other reefs in the archipelago). Long-distance larval imports may be too infrequent to sustain coral populations, but are critical for recovery in times of extreme local stress.


Subject(s)
Anthozoa/physiology , Animals , Conservation of Natural Resources , Palau
9.
Mar Pollut Bull ; 65(4-9): 236-48, 2012.
Article in English | MEDLINE | ID: mdl-22364951

ABSTRACT

The extreme 2010-2011 wet season resulted in highly elevated Burdekin River discharge into the Great Barrier Reef lagoon for a period of 200 days, resulting in a large flood plume extending >50km offshore and >100km north during peak conditions. Export of suspended sediment was dominated by clay and fine silt fractions and most sediment initially settled within ∼10km of the river mouth. Biologically-mediated flocculation of these particles enhanced deposition in the initial low salinity zone. Fine silt and clay particles and nutrients remaining in suspension, were carried as far as 100km northward from the mouth, binding with planktonic and transparent exopolymer particulate matter to form large floc aggregates (muddy marine snow). These aggregates, due to their sticky nature, likely pose a risk to benthic organisms e.g. coral and seagrass through smothering, and also by contributing to increased turbidity during wind-induced resuspension events.


Subject(s)
Environmental Monitoring , Geologic Sediments/analysis , Nitrogen/analysis , Phosphorus/analysis , Rivers/chemistry , Water Pollutants/analysis , Coral Reefs , Flocculation , Floods/statistics & numerical data , Models, Chemical , Particle Size , Queensland , Remote Sensing Technology , Salinity , Spacecraft , Water Movements , Water Pollution/statistics & numerical data
10.
Mar Pollut Bull ; 65(4-9): 267-79, 2012.
Article in English | MEDLINE | ID: mdl-22284702

ABSTRACT

We argue that the residence times of key pollutants exported to the Great Barrier Reef (GBR) are greater in the GBR lagoon than those of the water itself, in contradiction to some previous assumptions. Adverse effects of the pollutant discharge will be greater and longer lasting than previously considered, in turn requiring stronger or more urgent action to remediate land practices. Residence times of fine sediments, nitrogen and phosphorus, pesticides and trace metals are suggested to be from years to decades in the GBR lagoon and highly likely to be greater than the residence time of water, estimated at around 15-365days. The recovery of corals and seagrass in the central region of the GBR following current land-use remediation in the catchment depends on the residence time of these contaminants. Ecohydrological modeling suggests that this recovery may take decades even with adequate levels of improved land management practices.


Subject(s)
Conservation of Natural Resources/methods , Coral Reefs , Environmental Monitoring , Water Pollutants/analysis , Geologic Sediments/analysis , Metals/analysis , Nitrogen/analysis , Pesticides/analysis , Phosphorus/analysis , Remote Sensing Technology , Spacecraft , Water Pollution/statistics & numerical data
12.
Conserv Biol ; 24(1): 207-16, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19906066

ABSTRACT

Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.


Subject(s)
Conservation of Natural Resources , Ecosystem , Communication
13.
Science ; 319(5861): 321-3, 2008 Jan 18.
Article in English | MEDLINE | ID: mdl-18202288

ABSTRACT

A common assumption is that ecosystem services respond linearly to changes in habitat size. This assumption leads frequently to an "all or none" choice of either preserving coastal habitats or converting them to human use. However, our survey of wave attenuation data from field studies of mangroves, salt marshes, seagrass beds, nearshore coral reefs, and sand dunes reveals that these relationships are rarely linear. By incorporating nonlinear wave attenuation in estimating coastal protection values of mangroves in Thailand, we show that the optimal land use option may instead be the integration of development and conservation consistent with ecosystem-based management goals. This result suggests that reconciling competing demands on coastal habitats should not always result in stark preservation-versus-conversion choices.


Subject(s)
Conservation of Natural Resources , Ecology , Ecosystem , Rhizophoraceae , Wetlands , Alismatales , Animals , Anthozoa , Aquaculture/economics , Conservation of Natural Resources/economics , Cost-Benefit Analysis , Fisheries/economics , Lythraceae , Penaeidae , Thailand , Trees , Water Movements , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...