Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 10(1)2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31935871

ABSTRACT

The increased use of nanoparticles (NPs) requires efficient testing of their potential toxic effects. A promising approach is to use reporter cell lines to quickly assess the activation of cellular stress response pathways. This study aimed to use the ToxTracker reporter cell lines to investigate (geno)toxicity of various metal- or metal oxide NPs and draw general conclusions on NP-induced effects, in combination with our previous findings. The NPs tested in this study (n = 18) also included quantum dots (QDs) in different sizes. The results showed a large variation in cytotoxicity of the NPs tested. Furthermore, whereas many induced oxidative stress only few activated reporters related to DNA damage. NPs of manganese (Mn and Mn3O4) induced the most remarkable ToxTracker response with activation of reporters for oxidative stress, DNA damage, protein unfolding and p53-related stress. The QDs (CdTe) were highly toxic showing clearly size-dependent effects and calculations suggest surface area as the most relevant dose metric. Of all NPs investigated in this and previous studies the following induce the DNA damage reporter; CuO, Co, CoO, CdTe QDs, Mn, Mn3O4, V2O5, and welding NPs. We suggest that these NPs are of particular concern when considering genotoxicity induced by metal- and metal oxide NPs.

2.
PLoS One ; 13(2): e0192553, 2018.
Article in English | MEDLINE | ID: mdl-29420670

ABSTRACT

This work focuses on kinetic aspects of stability, mobility, and dissolution of bare Cu, Al and Mn, and SiO2 NPs in synthetic freshwater (FW) with and without the presence of natural organic matter (NOM). This includes elucidation of particle and surface interactions, metal dissolution kinetics, and speciation predictions of released metals in solution. Dihydroxy benzoic acid (DHBA) and humic acid adsorbed rapidly on all metal NPs (<1 min) via multiple surface coordinations, followed in general by rapid agglomeration and concomitant sedimentation for a large fraction of the particles. In contrast, NOM did not induce agglomeration of the SiO2 NPs during the test duration (21 days). DHBA in concentrations of 0.1 and 1 mM was unable to stabilize the metal NPs for time periods longer than 6 h, whereas humic acid, at certain concentrations (20 mg/L) was more efficient (>24 h). The presence of NOM increased the amount of released metals into solution, in particular for Al and Cu, whereas the effect for Mn was minor. At least 10% of the particle mass was dissolved within 24 h and remained in solution for the metal NPs in the presence of NOM. Speciation modeling revealed that released Al and Cu predominantly formed complexes with NOM, whereas less complexation was seen for Mn. The results imply that potentially dispersed NPs of Cu, Al and Mn readily dissolve or sediment close to the source in freshwater of low salinity, whereas SiO2 NPs are more stable and therefore more mobile in solution.


Subject(s)
Benzoates/chemistry , Environmental Exposure , Humic Substances , Metal Nanoparticles/chemistry , Adsorption , Aluminum/chemistry , Copper/chemistry , Fresh Water , Manganese/chemistry , Models, Theoretical , Particle Size , Silicon Dioxide/chemistry , Solubility , Thermodynamics
3.
Environ Pollut ; 224: 275-288, 2017 May.
Article in English | MEDLINE | ID: mdl-28196769

ABSTRACT

Studded tyres made of tungsten carbide cobalt (WC-Co) are in the Northern countries commonly used during the winter time. Tungsten (W)-containing nano- and micron-sized particles have been detected close to busy roads in several European countries. Other typical traffic wear particles consist of copper (Cu). The aims of this study were to investigate particle stability and transformation/dissolution properties of nanoparticles (NPs) of WC-Co compared with NPs of tungsten carbide (WC), cobalt (Co), and Cu. Their physicochemical characteristics (primarily surface oxide and charge) are compared with their extent of sedimentation and metal release in synthetic surface water (SW) with and without two different model organic molecules, 2,3- and 3,4-dihydroxybenzoic acid (DHBA) mimicking certain sorption sites of humic substances, for time periods up to 22 days. The WC-Co NPs possessed a higher electrochemical and chemical reactivity in SW with and without DHBA molecules as compared with NPs of WC, Co, and Cu. Co was completely released from the WC-Co NPs within a few hours of exposure, although it remained adsorbed/bonded to the particle surface and enabled the adsorption of negatively charged DHBA molecules, in contrast with the WC NPs (no adsorption of DHBA). The DHBA molecules were found to rapidly adsorb on the Co and Cu NPs. The sedimentation of the WC and WC-Co NPs was not influenced by the presence of the 2,3- or 3,4-DHBA molecules. A slight influence (slower sedimentation) was observed for the Co NPs, and a strong influence (slower sedimentation) was observed for the Cu NPs in SW with 2,3-DHBA compared with SW alone. The extent of metal release increased in the order: WC < Cu < Co < WC-Co NPs. All NPs released more than 1 wt-% of their metal total mass. The release from the Cu NPs was most influenced by the presence of DHBA molecules.


Subject(s)
Cobalt/analysis , Copper/analysis , Humic Substances , Nanoparticles/analysis , Nanoparticles/chemistry , Rubber/chemistry , Tungsten Compounds/analysis , Water/chemistry , Automobiles , Particle Size
4.
J Nanopart Res ; 18(9): 285, 2016.
Article in English | MEDLINE | ID: mdl-27774036

ABSTRACT

ABSTRACT: In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30-80 % when sonicating in 1 and 2.56 g/L NP stock solutions. After sonication, extensive agglomeration of the metal NPs resulted in rapid sedimentation of all particles. DLVO calculations supported these findings, showing the strong van der Waals forces of the metal NPs to result in significant NP agglomeration. Metal release from the metal NPs was slightly increased by increased sonication. The addition of a stabilizing agent (bovine serum albumin) had an accelerating effect on the release of metals in sonicated solutions. For Cu and Mn NPs, the extent of particle dissolution increased from <1.6 to ~5 % after sonication for 15 min. A prolonged sonication time (3-15 min) had negligible effects on the zeta potential of the studied NPs. In all, it is shown that it is of utmost importance to carefully investigate how sonication influences the physico-chemical properties of dispersed metal NPs. This should be considered in nanotoxicology investigations of metal NPs.

5.
Environ Sci Technol ; 48(13): 7314-22, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24892700

ABSTRACT

From an increased use of silver nanoparticles (Ag NPs) as an antibacterial in consumer products follows a need to assess the environmental interaction and fate of their possible dispersion and release of silver. This study aims to elucidate an exposure scenario of the Ag NPs potentially released from, for example, impregnated clothing by assessing the release of silver and changes in particle properties in sequential contact with synthetic sweat, laundry detergent solutions, and freshwater, simulating a possible transport path through different aquatic media. The release of ionic silver is addressed from a water chemical perspective, compared with important particle and surface characteristics. Released amounts of silver in the sequential exposures were significantly lower, approximately a factor of 2, than the sum of each separate exposure. Particle characteristics such as speciation (both of Ag ionic species and at the Ag NP surface) influenced the release of soluble silver species present on the surface, thereby increasing the total silver release in the separate exposures compared with sequential immersions. The particle stability had no drastic impact on the silver release as most of the Ag NPs were unstable in solution. The silver release was also influenced by a lower pH (increased release of silver), and cotransported zeolites (reduced silver in solution).


Subject(s)
Detergents/chemistry , Metal Nanoparticles/chemistry , Silver/analysis , Sweat/chemistry , Water/chemistry , Adsorption , Filtration , Fresh Water/chemistry , Particle Size , Solubility , Solutions , Sonication , Spectrum Analysis, Raman , Water Pollutants, Chemical/analysis , Zeolites/chemistry
6.
Langmuir ; 29(28): 8882-91, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23758058

ABSTRACT

The stability of silver nanoparticles (Ag NPs) potentially released from clothing during a laundry cycle and their interactions with laundry-relevant surfactants [anionic (LAS), cationic (DTAC), and nonionic (Berol)] have been investigated. Surface interactions between Ag NPs and surfactants influence their speciation and stability. In the absence of surfactants as well as in the presence of LAS, the negatively charged Ag NPs were stable in solution for more than 1 day. At low DTAC concentrations (≤1 mM), DTAC-Ag NP interactions resulted in charge neutralization and formation of agglomerates. The surface charge of the particles became positive at higher concentrations due to a bilayer type formation of DTAC that prevents from agglomeration due to repulsive electrostatic forces between the positively charged colloids. The adsorption of Berol was enhanced when above its critical micelle concentration (cmc). This resulted in a surface charge close to zero and subsequent agglomeration. Extended DLVO theory calculations were in compliance with observed findings. The stability of the Ag NPs was shown to depend on the charge and concentration of the adsorbed surfactants. Such knowledge is important as it may influence the subsequent transport of Ag NPs through different chemical transients and thus their potential bioavailability and toxicity.


Subject(s)
Laundering , Metal Nanoparticles/chemistry , Silver/chemistry , Surface-Active Agents/chemistry , Colloids , Hydrogen-Ion Concentration , Surface Properties , Time Factors , Water/chemistry
7.
J Contam Hydrol ; 128(1-4): 19-32, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22192342

ABSTRACT

Many countries intend to use compacted bentonite as a barrier in their deep geological repositories for nuclear waste. In order to describe and predict hydraulic conductivity or radionuclide transport through the bentonite barrier, fundamental understanding of the microstructure of compacted bentonite is needed. This study examined the interlayer swelling and overall microstructure of Wyoming Bentonite MX-80 and the corresponding homo-ionic Na(+) and Ca(2+) forms, using XRD with samples saturated under confined swelling conditions and free swelling conditions. For the samples saturated under confined conditions, the interparticle, or so-called free or external porosity was estimated by comparing the experimental interlayer distances obtained from one-dimensional XRD profile fitting against the maximum interlayer distances possible for the corresponding water content. The results showed that interlayer porosity dominated total porosity, irrespective of water content, and that the interparticle porosity was lower than previously reported in the literature. At compactions relevant for the saturated bentonite barrier (1.4-1.8 g/cm(3)), the interparticle porosity was estimated to ≤3%.


Subject(s)
Bentonite/chemistry , Models, Theoretical , Radioactive Pollutants/chemistry , Radioactive Waste , Waste Management/methods , Porosity , Wyoming , X-Ray Diffraction
8.
J Colloid Interface Sci ; 335(1): 54-61, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19423125

ABSTRACT

Colloid generation and sedimentation experiments were carried out on Na- and Ca-montmorillonite in order to verify whether pseudo-equilibrium concentrations are reached at the same level in both types of experiments. The size and concentration of colloidal Na- and Ca-montmorillonite particles were monitored as a function of time and distance from the colloid bed in different ionic strength solutions. A stable pseudo-equilibrium concentration was reached after time in generation and sedimentation experiments. The colloid concentration decreased sharply at distances near to the colloid source. Na-montmorillonite concentration at pseudo-equilibrium (roughly quantified at distances > or = 7 cm from the colloid source) was 5.2 +/- 0.5, 0.5 +/- 0.1, and 0.2 +/- 0.1 mg L(-1) in 0.001, 0.01, and 0.1 M NaCl solution, respectively, while the Ca-montmorillonite concentration was 0.4 +/- 0.2 mg L(-1) in 0.001 M NaCl.

9.
J Colloid Interface Sci ; 315(2): 512-9, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17764680

ABSTRACT

The stability of the sodium and calcium forms of montmorillonite was studied at different NaCl and CaCl2 concentrations. The aggregation kinetics was determined from the decrease in particle concentration with time at different electrolyte concentrations. The DLVO theory defines the critical coagulation concentration (CCC) value as the electrolyte concentration that balances the attractive and repulsive potential energies between the particles, making aggregation diffusion-controlled. Therefore CCC values were obtained by extrapolation of the aggregation rate constants measured as a function of ionic strength to conditions where the rate constant value is determined by diffusion only. When the electrolyte was CaCl2, the CCC value was found to be approximately two orders of magnitude lower than the CCC values obtained using NaCl as electrolyte.

10.
J Colloid Interface Sci ; 298(2): 694-705, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16458320

ABSTRACT

The stability of natural bentonite suspensions has been investigated as a function of temperature at pH 9 and ionic strength 10(-3) M. The sedimentation rate of the particles is directly related to their stability. The sedimentation kinetics was determined by examining the variation of particle concentration in solution with time. The observed kinetics for sedimentation is discussed quantitatively in terms of the potential energy between particles. The zeta-potential of the particles was measured and the DLVO theory was used to calculate attractive and repulsive potentials. Experimental observations are consistent with DLVO model predictions and show that the stability of bentonite colloids increases with temperature. Differences with other colloidal systems can be attributed to the temperature dependence of the surface charge of bentonite particles.

SELECTION OF CITATIONS
SEARCH DETAIL
...