Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Vet Sci ; 8: 698298, 2021.
Article in English | MEDLINE | ID: mdl-34796223

ABSTRACT

Musculoskeletal injuries remain a global problem for the Thoroughbred racing industry and there is conflicting evidence regarding the effect of age on the incidence of injuries. The ideal time to commence race training is strongly debated, with limited supporting literature. There is also conflicting evidence regarding the effect of high-speed exercise on musculoskeletal injuries. There is a strong interest in developing training and management strategies to reduce the frequency of injuries. The types of musculoskeletal injuries vary between 2-year-old and older horses, with dorsal metacarpal disease the most common injury in 2-year-old horses. It is likely that risk factors for injury in 2-year-old horses are different than those for older horses. It is also likely that the risk factors may vary between types of injury. This study aimed to determine the risk factors for musculoskeletal injuries and dorsal metacarpal disease. We report the findings of a large scale, prospective observational study of 2-year-old horses in Queensland, Australia. Data were collected weekly for 56-weeks, from 26 trainers, involving 535 2-year-old Thoroughbred racehorses, 1, 258 training preparations and 7, 512-weeks of exercise data. A causal approach was used to develop our statistical models, to build on the existing literature surrounding injury risk, by incorporating the previously established causal links into our analyses. Where previous data were not available, industry experts were consulted. Survival analyses were performed using Cox proportional hazards or Weibull regression models. Analysis of musculoskeletal injuries overall revealed the hazard was reduced with increased exposure to high-speed exercise [Hazard ratio (HR) 0.89, 95% Confidence Interval (CI) 0.84, 0.94, p < 0.001], increased number of training preparations (HR 0.58, 95% CI 0.50, 0.67, p < 0.001), increased rest before the training preparation (HR 0.89, 95% CI 0.83, 0.96, p = 0.003) and increased dam parity (HR 0.86, 95% CI 0.77, 0.97, p = 0.01). The hazard of injury was increased with increasing age that training commenced (HR 1.13, 95% CI 1.06, 1.19, p < 0.001). Analyses were then repeated with the outcome of interest dorsal metacarpal disease. Factors that were protective against dorsal metacarpal disease and musculoskeletal injuries overall included: increased total cumulative distance (HR 0.89, 95% CI 0.82, 0.97, p = 0.001) and total cumulative days exercised as a gallop (HR 0.96, 95% CI 0.92, 0.99, p = 0.03), the number of the training preparations (HR 0.43, 95% CI 0.30, 0.61, p < 0.001). The age that training commenced was harmful for both dorsal metacarpal disease (HR 1.17, 95% CI 1.07, 1.28, p < 0.001 and overall musculoskeletal injuries.). The use of non-ridden training modalities was protective for dorsal metacarpal disease (HR 0.89, 95% CI 0.81, 0.97, p = 0.008), but not musculoskeletal injuries overall. The male sex increased the hazard of DMD compared to females (HR 2.58, 95% CI 1.20, 5.56, p = 0.02), but not MSI overall. In summary, the hazard of musculoskeletal injury is greatest for 2-year-old horses that are born from uniparous mares, commence training at a later age, are in their first training preparation, have undertaken little high-speed exercise or had limited rest before their training preparation. The hazard of dorsal metacarpal disease is greatest for 2-year-old horses that are males, commence training at a later age, are in their first training preparation, have undertaken little high-speed exercise or had limited use of non-ridden training modalities. Close monitoring of these high-risk horses during their training program could substantially reduce the impact of MSI. Furthermore, an understanding of how training methodologies affect the hazard of MSI facilitates modification of training programs to mitigate the risk impact of injury. The strengths of this study include a large sample size, a well-defined study protocol and direct trainer interviews. The main limitation is the inherent susceptibility to survival bias.

2.
Animals (Basel) ; 11(4)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33805873

ABSTRACT

Worldwide, musculoskeletal injuries remain a major problem for the Thoroughbred racing industry. There is a strong interest in developing training and management strategies to reduce the impact of musculoskeletal injuries, however, progress has been limited by studies reporting conflicting findings, and a limited understanding of the role of different training methods in preventing injury. There is little data on patterns of rest periods and exercise data and how these vary between trainers. This prospective study of two-year-old racehorses was conducted in Queensland, Australia and involved weekly personal structured interviews with 26 trainers over 56 weeks. Detailed daily exercise data for 535 horses providing 1258 training preparations and 7512 weeks at risk were collected. Trainers were categorised into three groups by the mean number of two-year-old horses that they had in work each week over the study duration: (1) Small stables with five or less, (2) Medium stables with 6 to 15 and (3) Large stables with greater than 15 horses in training. Differences between trainers with small, medium and large stable sizes were evaluated using linear regression, Kruskal-Wallis equality-of-populations rank test if linear models were mis-specified or Chi-squared tests for categorical variables. Significant differences were observed between trainers, with horses from larger stables accumulating a greater high-speed exercise volume (p < 0.001), attaining training milestones more frequently (p = 0.01) and taking less time to reach their training milestones (p = 0.001). This study provides detailed data to which training practices from other locations can be compared. Presenting actual training data rather than trainers' estimation of a typical program provides a more accurate assessment of training practices. Understanding how training practices vary between regions improves comparability of studies investigating risk factors and is an important step towards reducing the impact of musculoskeletal injuries.

3.
Animals (Basel) ; 11(2)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670209

ABSTRACT

Equine advanced imaging research involving racehorse fetlock pathology commonly uses cadaver limbs and a freeze-thaw process. The presence of short tau inversion recovery (STIR) signal intensity in the distal third metacarpal/metatarsal bone is of particular interest and may be clinically relevant in the diagnosis of horses at risk of fracture. However, little is known about the effect of the freeze-thaw process on the MRI appearance of STIR hyperintensity in these bones. This study compares the low-field MRI appearance of the distal third metacarpal/metatarsal bone from cadaver limbs of Thoroughbreds in race training before and after a freeze-thaw protocol. Blinded and unblinded comparisons were made using objective SNR values and subjective grading. Fifteen cadaver limbs with STIR hyperintensity in the distal third metacarpal/metatarsal bone were included. No overall clinical or statistical significance was detected in STIR signal intensity and distribution after freeze-thaw. Three limbs from one horse had individual changes in STIR hyperintensity that were hypothesized to be attributable to ante-mortem haemodynamic abnormalities caused by anaesthesia. These results indicate that the distribution and intensity of STIR hyperintensity in freeze-thawed cadaver fetlocks can be considered representative of the appearance of pathology in the recently euthanized horse. However, care should be taken with horse selection and handling of the cadaver limbs to ensure reliable appearance of STIR signal after freeze-thaw.

4.
Animals (Basel) ; 11(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494508

ABSTRACT

Musculoskeletal injuries (MSI) continue to affect Thoroughbred racehorses internationally. There is a strong interest in developing training and management strategies to reduce their impact, however, studies of risk factors report inconsistent findings. Furthermore, many injuries and fatalities occur during training rather than during racing, yet most studies report racing data only. By combining racing and training data a larger exposure to risk factors and a larger number of musculoskeletal injuries are captured and the true effect of risk factors may be more accurately represented. Furthermore, modifications to reduce the impact of MSI are more readily implemented at the training level. Our study aimed to: (1) determine the risk factors for musculoskeletal injuries and whether these are different for two-year-old and older horses and (2) determine whether risk factors vary with type of injury. This was performed by repeating analyses by age category and injury type. Data from 202 cases and 202 matched controls were collected through weekly interviews with trainers and analysed using conditional logistic regression. Increasing dam parity significantly reduced the odds of injury in horses of all age groups because of the effect in two-year-old horses (odds ratio (OR) 0.08; 95% confidence interval (CI) 0.02, 0.36; p < 0.001). Increasing total preparation length is associated with higher odds of injury in horses of all ages (OR 5.56; 95% CI 1.59, 19.46; p = 0.01), but particularly in two-year-old horses (OR 8.05; 95% CI 1.92, 33.76; p = 0.004). Increasing number of days exercised at a slow pace decreased the odds of injury in horses of all ages (OR 0.09; 95% CI 0.03, 0.28; p < 0.001). The distance travelled at three-quarter pace and above (faster than 13 m/s; 15 s/furlong; 800 m/min; 48 km/h) and the total distance travelled at a gallop (faster than 15 m/s; 13 s/furlong; 900 m/min; 55 km/h) in the past four weeks significantly affected the odds of injury. There was a non-linear association between high-speed exercise and injury whereby the odds of injury initially increased and subsequently decreased as accumulated high-speed exercise distance increased. None of the racing career and performance indices affected the odds of injury. We identified horses in this population that have particularly high odds of injury. Two-year-old horses from primiparous mares are at increased odds of injury, particularly dorsal metacarpal disease. Two-year-old horses that have had a total preparation length of between 10 and 14 weeks also have increased odds of injury. Horses of all ages that travelled a total distance of 2.4-3.8 km (12-19 furlongs) at a gallop in the last four weeks and horses three years and older that travelled 3.0-4.8 km (15-24 furlongs) at three-quarter pace and above also have increased odds of injury. We recommend that these horses should be monitored closely for impending signs of injury. Increasing the number of days worked at a slow pace may be more effective for preventing injury, if horses are perceived at a higher risk, than resting the horse altogether. Early identification of horses at increased risk and appropriate intervention could substantially reduce the impact of musculoskeletal injuries in Thoroughbred racehorses.

5.
Animals (Basel) ; 11(1)2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33440666

ABSTRACT

There is international public concern regarding retirement of racehorses, including the reason for retirement and the outcome for horses after racing. However, there are currently no prospective studies investigating these factors. A recent independent inquiry in Queensland, Australia, highlighted that the true outcomes for horses after retirement from racing are largely unknown. Furthermore, there are currently no measures to monitor the outcome for racehorses and their welfare once they have left the care of the trainer. This study investigated these gaps in knowledge through a weekly survey conducted over a 13-month period. We aimed to evaluate: (1) the incidence of retirement, (2) the reasons and risk factors for retirement and (3) the medium-term (greater than 6 months) outcomes for horses after retirement. Data were collected through personal structured weekly interviews with participating trainers and analysed using negative binomial and logistic regression. There was a low incidence of retirements, namely 0.4% of horses in training per week. The season and training track did not affect the incidence of retirement. Musculoskeletal injuries were the most common reason for retirement (40/110 horses, 36%). Involuntary retirements accounted for 56/100 (51%) of retirements, whereby musculoskeletal injuries, respiratory or cardiac conditions and behavioural problems prevented the horse from racing The odds of voluntary retirement, whereby the horse was retired due to racing form or impending injury, increased with each additional race start (OR 1.05; p = 0.01) and start/year of racing (OR 1.21; p = 0.03) but decreased with increasing percentage of first, second and third places (OR 0.94; p < 0.001). Medium-term follow-up (median 14 months, IQR 11, 18, range 8-21) revealed that most horses (108/110; 98%) were repurposed after retirement, almost half as performance horses (50/110; 46%). Horses that voluntarily retired had 2.28 times the odds of being repurposed as performance horses than those retired involuntarily (p = 0.03). Whether retirement was voluntary or involuntary did not influence whether horses were used for breeding or pleasure. The primary limitation of this study is that our results reflect retirement in racehorses in South East Queensland, Australia, and may not be globally applicable. Furthermore, we were unable to monitor the long-term outcome and welfare of horses in their new careers. It is vital that the industry is focused on understanding the risks for voluntary rather than involuntary retirement and optimising the long-term repurposing of horses. There is a need for traceability and accountability for these horses to ensure that their welfare is maintained in their new careers.

6.
Animals (Basel) ; 10(12)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276500

ABSTRACT

Accurately measuring body temperature in horses will improve the management of horses suffering from or being at risk of developing postrace exertional heat illness. PTSM has the potential for measuring body temperature accurately, safely, rapidly, and noninvasively. This study was undertaken to investigate the relation between the core body temperature and PTSM temperatures prior to, during, and immediately after exercise. The microchips were implanted into the nuchal ligament, the right splenius, gluteal, and pectoral muscles, and these locations were then compared with the central venous temperature, which is considered to be the "gold standard" for assessing core body temperature. The changes in temperature of each implant in the horses were evaluated in each phase (prior to, during, and immediately postexercise) and combining all phases. There were strong positive correlations ranging from 0.82 to 0.94 (p < 0.001) of all the muscle sites with the central venous temperature when combining all the phases. Additionally, during the whole period, PTSM had narrow limits of agreement (LOA) with central venous temperature, which inferred that PTSM is essentially equivalent in measuring horse body temperature. Overall, the pectoral PTSM provided a valid estimation of the core body temperature.

7.
Animals (Basel) ; 10(11)2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33167429

ABSTRACT

Musculoskeletal injuries (MSI) remain a concerning cause of racehorse morbidity and mortality with important ethical and welfare consequences. Previous research examining risk factors for MSI report inconsistent findings. Age is thought to affect MSI risk, but, to date, there have been no prospective studies comparing MSI in two-year-old versus older horses. This study aimed to: (1) determine the incidence of MSI for two-year-old and older horses, and whether this was affected by training track, season, or rainfall, and (2) determine the types of MSI affecting two-year-old and older horses, and whether horses trialled or raced after injury. A prospective survey was conducted with data collected through personal structured weekly interviews with participating trainers over a 13-month period. Data were analysed using Poisson regression. The incidence of MSI in the current study was low (0.6%). The incidence of MSI in two-year-old horses was higher than older horses (p < 0.001). Types of MSI varied between two-year-old and older horses (p < 0.001) and affected whether horses subsequently trailed or raced from 11 to 23 months after injury (p < 0.001). A larger proportion of two-year-old horses had dorsal metacarpal disease and traumatic lacerations. A smaller proportion of two-year-old horses had suspensory ligament desmitis, superficial digital flexor tendonitis, proximal sesamoid bone fractures, and fetlock joint injuries than older horses. Training track and rainfall did not affect MSI. The season affected MSI in two-year-old horses (p < 0.001) but not older horses. The major limitation was that trainers in this study were metropolitan (city) and our findings may not be generalisable to racehorses in regional (country) areas. Another significant limitation was the assumption that MSI was the reason for failure to trial or race after injury. In conclusion, the incidence of MSI was low in the current study and the types and the risk factors for MSI are different for two-year-old and older horses.

8.
Vaccine ; 38(42): 6578-6584, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32798141

ABSTRACT

Q-VAX® is a vaccine used to prevent Q fever. Administration of the vaccine is complicated by the need to ensure, using intradermal and serological tests, that individuals have no prior immunity. Previous studies suggest that the vaccine is highly efficacious and long-lasting in adults. However, there has been no systematic follow-up of vaccine efficacy and the longevity of immunity using population-level data. We aimed to investigate the vaccine failure rate and duration of immunity in previously vaccinated individuals. We formulated a retrospective cohort study design within a linked data. We used a Q fever vaccination registry linked to Q fever notifications and hospital admissions (1991-2016) in the state of Queensland, which has Australia's highest incidence of Q fever. Q-VAX® failure was defined as occurrence of Q fever > 14 days' after vaccination. The incidence of Q fever in vaccinated and unvaccinated individuals was 5.40 (95% CI: 3.65, 7.72) and 89.50 (95% CI: 70.50, 112.00]) per 100,000 person-years of follow-up, respectively. The hazard ratio (HR) for Q fever was 0.07 (95% CI: 0.04, 0.10) in non-immune vaccinated compared with immune unvaccinated individuals. The overall vaccine effectiveness was found to be 94.37% suggesting that Q-VAX® is highly effective at preventing Q fever. However, the greater incidence observed in unvaccinated individuals considered immune during the pre-vaccination screening may suggest that pre-vaccination screening is sub-optimal among this study population.


Subject(s)
Occupational Exposure , Q Fever , Adult , Australia , Humans , Q Fever/epidemiology , Q Fever/prevention & control , Queensland/epidemiology , Retrospective Studies , Vaccination
9.
One Health ; 6: 23-28, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30302365

ABSTRACT

Q fever caused by the gram negative bacteria, Coxiella burnetii, is an occupational hazard for those who live and work in rural settings and those who are in contact with animals, especially abattoir and slaughterhouse workers. Australia is the only country to register a vaccine to prevent Q fever (Q-vax®, Seqirus, Australia) that is used in high risk populations. Seroprevalence studies conducted to determine the burden of Q fever (C. burnetii infection) in different settings have demonstrated high levels of heterogeneity with estimates of the percent positive ranging from 30% to 70%. There is a need for a more systematic evaluation of the findings of these studies in order to provide summary estimates of the seroprevalence in different settings. We searched for published articles using PubMed, MEDLINE-EMBASE, and Scopus databases using search terms obtained from an initial review of published reports of recent Q fever outbreaks. Data on the seroprevalence of C. burnetii infection (Q fever) was extracted from the selected studies and a random effects meta-analysis was performed with stratification by outbreak status, year, country and serological techniques used. Results were visualised with a forest plot with 95% CI and measures of heterogeneity (I 2) for the random effects model. A total of 19 articles that met the search criteria were included. The reported seroprevalence rate ranged from 4.7% to 91.7% among abattoir and slaughterhouse workers. No inter-group heterogeneity was observed (p = 0.956), supporting the pooling of all studies into one pooled measure. The pooled estimate of seropositivity for C. burnetii infection in people working in abattoirs and slaughterhouses was 26% (95% CI: 18-35%) regardless of the evidence of an "outbreak", the time of year or country. Seropositivity for C burnetii was independent of a person's age and years of occupational experience. Within abattoirs and slaughterhouses, slaughtering of cattle, sheep and goats are the most important risk factors associated with seropositivity and for those who showed over symptoms upon infection. We recommend that vaccination programmes are directed towards people employed in the meat processing industry to mitigate the significant health and economic impacts of Q fever.

10.
Infect Ecol Epidemiol ; 6: 33799, 2016.
Article in English | MEDLINE | ID: mdl-27906122

ABSTRACT

PURPOSE OF THE REVIEW: This review was performed to create a repository of information on One Health research and training in Australia and New Zealand (ANZ). The review sought to determine 1) how many training activities there are in ANZ, 2) how much research on zoonotic diseases is undertaken by multidisciplinary teams, and 3) how collaborative and integrated they are. RECENT FINDINGS: There are few opportunities for training in One Health in ANZ. The majority require enrolment in a postgraduate degree programme, and there is only one postgraduate level course that is also available for continuing professional development (CPD). Of the broad range of One Health research performed in ANZ, the majority is performed by teams with limited disciplinary diversity, although diversity is improving. SUMMARY: Progress has been made in building collaboration between human, animal, and environmental health professions. However, the lack of clearly defined competencies and agreed purpose for One Health may be impeding collaboration.

SELECTION OF CITATIONS
SEARCH DETAIL
...