Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Aging Dis ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38913044

ABSTRACT

While the vast majority of Alzheimer's disease (AD) is non-familial, the animal models of AD that are commonly used for studying disease pathogenesis and development of therapy are mostly of a familial form. We aimed to generate a model reminiscent of the etiologies related to the common late-onset Alzheimer's disease (LOAD) sporadic disease that will recapitulate AD/dementia features. Naïve female mice underwent ovariectomy (OVX) to accelerate aging/menopause and were fed a high fat-sugar-salt diet to expose them to factors associated with increased risk of development of dementia/AD. The OVX mice fed a high fat-sugar-salt diet responded by dysregulation of glucose/insulin, lipid, and liver function homeostasis and increased body weight with slightly increased blood pressure. These mice developed AD-brain pathology (amyloid and tangle pathologies), gliosis (increased burden of astrocytes and activated microglia), impaied blood vessel density and neoangiogenesis, with cognitive impairment. Thus, OVX mice fed on a high fat-sugar-salt diet imitate a non-familial sporadic/environmental form of AD/dementia with vascular damage. This model is reminiscent of the etiologies related to the LOAD sporadic disease that represents a high portion of AD patients, with an added value of presenting concomitantly AD and vascular pathology, which is a common condition in dementia. Our model can, thereby, provide a valuable tool for studying disease pathogenesis and for the development of therapeutic approaches.

2.
Mol Psychiatry ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378926

ABSTRACT

Psilocybin, a naturally occurring, tryptamine alkaloid prodrug, is currently being investigated for the treatment of a range of psychiatric disorders. Preclinical reports suggest that the biological effects of psilocybin-containing mushroom extract or "full spectrum" (psychedelic) mushroom extract (PME), may differ from those of chemically synthesized psilocybin (PSIL). We compared the effects of PME to those of PSIL on the head twitch response (HTR), neuroplasticity-related synaptic proteins and frontal cortex metabolomic profiles in male C57Bl/6j mice. HTR measurement showed similar effects of PSIL and PME over 20 min. Brain specimens (frontal cortex, hippocampus, amygdala, striatum) were assayed for the synaptic proteins, GAP43, PSD95, synaptophysin and SV2A, using western blots. These proteins may serve as indicators of synaptic plasticity. Three days after treatment, there was minimal increase in synaptic proteins. After 11 days, PSIL and PME significantly increased GAP43 in the frontal cortex (p = 0.019; p = 0.039 respectively) and hippocampus (p = 0.015; p = 0.027) and synaptophysin in the hippocampus (p = 0.041; p = 0.05) and amygdala (p = 0.035; p = 0.004). PSIL increased SV2A in the amygdala (p = 0.036) and PME did so in the hippocampus (p = 0.014). In the striatum, synaptophysin was increased by PME only (p = 0.023). There were no significant effects of PSIL or PME on PSD95 in any brain area when these were analyzed separately. Nested analysis of variance (ANOVA) showed a significant increase in each of the 4 proteins over all brain areas for PME versus vehicle control, while significant PSIL effects were observed only in the hippocampus and amygdala and were limited to PSD95 and SV2A. Metabolomic analyses of the pre-frontal cortex were performed by untargeted polar metabolomics utilizing capillary electrophoresis - Fourier transform mass spectrometry (CE-FTMS) and showed a differential metabolic separation between PME and vehicle groups. The purines guanosine, hypoxanthine and inosine, associated with oxidative stress and energy production pathways, showed a progressive decline from VEH to PSIL to PME. In conclusion, our synaptic protein findings suggest that PME has a more potent and prolonged effect on synaptic plasticity than PSIL. Our metabolomics data support a gradient of effects from inert vehicle via chemical psilocybin to PME further supporting differential effects. Further studies are needed to confirm and extend these findings and to identify the molecules that may be responsible for the enhanced effects of PME as compared to psilocybin alone.

3.
Transl Psychiatry ; 13(1): 164, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37164956

ABSTRACT

Preliminary clinical findings, supported by preclinical studies employing behavioral paradigms such as marble burying, suggest that psilocybin may be effective in treating obsessive-compulsive disorder. However, the receptor mechanisms implicated in the putative anti-obsessional effect are not clear. On this background, we set out to explore (1) the role of serotonin 2A (5-HT2A) and serotonin 1A (5-HT1A) receptors in the effect of psilocybin on marble burying; (2) the effect of staggered versus bolus psilocybin administration and persistence of the effect; (3) the effect of the 5-HT1A partial agonist, buspirone, on marble-burying and the head twitch response (HTR) induced by psilocybin, a rodent correlate of psychedelic effects. Male ICR mice were administered psilocybin 4.4 mg/kg, escitalopram 5 mg/kg, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) 2 mg/kg, M100907 2 mg/kg, buspirone 5 mg/kg, WAY100635 2 mg/kg or combinations, intraperitoneally, and were tested on the marble burying test. HTR was examined in a magnetometer-based assay. The results show that (1) Psilocybin and escitalopram significantly reduced marble burying. The effect of psilocybin was not attenuated by the 5-HT2A antagonist, M100907. The 5-HT1A agonist, 8-OH-DPAT, reduced marble burying as did the 5-HT1A partial agonist, buspirone. The effect of 8-OH-DPAT was additive to that of psilocybin, but that of buspirone was not. The 5-HT1A antagonist, WAY100635, attenuated the effect of 8-OH-DPAT and buspirone but not the effect of psilocybin. (2) Psilocybin injections over 3.5 h had no effect on marble burying and the effect of bolus injection was not persistent. (3) Co-administration of buspirone with psilocybin blocked its effect on HTR. These data suggest that neither 5-HT2A nor 5-HT1A receptors are pivotally implicated in the effect of psilocybin on marble burying. Co-administration with buspirone may block the psychedelic effects of psilocybin without impeding its anti-obsessional effects.


Subject(s)
Hallucinogens , Obsessive-Compulsive Disorder , Animals , Male , Mice , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , 8-Hydroxy-2-(di-n-propylamino)tetralin/therapeutic use , Buspirone/pharmacology , Buspirone/therapeutic use , Escitalopram , Hallucinogens/pharmacology , Mice, Inbred ICR , Obsessive-Compulsive Disorder/drug therapy , Psilocybin/pharmacology , Serotonin , Receptor, Serotonin, 5-HT1A
4.
Mol Psychiatry ; 28(1): 44-58, 2023 01.
Article in English | MEDLINE | ID: mdl-36280752

ABSTRACT

Schizophrenia is a widespread psychiatric disorder that affects 0.5-1.0% of the world's population and induces significant, long-term disability that exacts high personal and societal cost. Negative symptoms, which respond poorly to available antipsychotic drugs, are the primary cause of this disability. Association of negative symptoms with cortical atrophy and cell loss is widely reported. Psychedelic drugs are undergoing a significant renaissance in psychiatric disorders with efficacy reported in several conditions including depression, in individuals facing terminal cancer, posttraumatic stress disorder, and addiction. There is considerable evidence from preclinical studies and some support from human studies that psychedelics enhance neuroplasticity. In this Perspective, we consider the possibility that psychedelic drugs could have a role in treating cortical atrophy and cell loss in schizophrenia, and ameliorating the negative symptoms associated with these pathological manifestations. The foremost concern in treating schizophrenia patients with psychedelic drugs is induction or exacerbation of psychosis. We consider several strategies that could be implemented to mitigate the danger of psychotogenic effects and allow treatment of schizophrenia patients with psychedelics to be implemented. These include use of non-hallucinogenic derivatives, which are currently the focus of intense study, implementation of sub-psychedelic or microdosing, harnessing of entourage effects in extracts of psychedelic mushrooms, and blocking 5-HT2A receptor-mediated hallucinogenic effects. Preclinical studies that employ appropriate animal models are a prerequisite and clinical studies will need to be carefully designed on the basis of preclinical and translational data. Careful research in this area could significantly impact the treatment of one of the most severe and socially debilitating psychiatric disorders and open an exciting new frontier in psychopharmacology.


Subject(s)
Antipsychotic Agents , Hallucinogens , Psychotic Disorders , Schizophrenia , Animals , Humans , Hallucinogens/therapeutic use , Hallucinogens/pharmacology , Schizophrenia/drug therapy , Psychotic Disorders/drug therapy , Antipsychotic Agents/therapeutic use
5.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36430623

ABSTRACT

There is increasing interest in the therapeutic potential of psilocybin. In rodents, the serotonin precursor, 5-hydroxytryptophan (5-HTP) and psilocybin induce a characteristic 5-HT2A receptor (5-HT2AR)-mediated head twitch response (HTR), which is correlated with the human psychedelic trip. We examined the role of other serotonergic receptors and the trace amine -associated receptor 1 (TAAR1) in modulating 5-HTP- and psilocybin-induced HTR. Male C57BL/6J mice (11 weeks, ~30 g) were administered 5-HTP, 50-250 mg/kg i.p., 200 mg/kg i.p. after pretreatment with 5-HT/TAAR1 receptor modulators, psilocybin 0.1-25.6 mg/kg i.p. or 4.4 mg/kg i.p., immediately preceded by 5-HT/TAAR1 receptor modulators. HTR was assessed in a custom-built magnetometer. 5-HTP and psilocybin induced a dose-dependent increase in the frequency of HTR over 20 min with attenuation by the 5-HT2AR antagonist, M100907, and the 5-HT1AR agonist, 8-OH-DPAT. The 5-HT2CR antagonist, RS-102221, enhanced HTR at lower doses but reduced it at higher doses. The TAAR1 antagonist, EPPTB, reduced 5-HTP- but not psilocybin-induced HTR. We have confirmed the key role of 5-HT2AR in HTR, an inhibitory effect of 5-HT1AR, a bimodal contribution of 5-HT2CR and a role of TAAR1 in modulating HTR induced by 5-HTP. Compounds that modulate psychedelic-induced HTR have important potential in the emerging therapeutic use of these compounds.


Subject(s)
Hallucinogens , Psilocybin , Mice , Humans , Animals , Male , Mice, Inbred C57BL , Psilocybin/pharmacology , 5-Hydroxytryptophan/pharmacology , Hallucinogens/pharmacology , Serotonin
6.
Brain Res ; 1711: 193-201, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30659829

ABSTRACT

Development of specific treatments for vascular dementia requires appropriate animal models. Bilateral carotid artery stenosis (BCAS) employs metal coils wrapped around both common carotid arteries to induce cerebral hypoperfusion, white matter lesions and memory impairment in mice. We focused on the relationship of memory impairment induced by BCAS to white matter lesions demonstrated by ex vivo magnetic resonance imaging (MRI). We found a significant effect of BCAS on perceptual learning in the novel object recognition test and on number of errors and latency to platform in the radial arm water maze. MRI analysis revealed a significant effect of BCAS on diffusion tensor imaging (DTI) parameters in white matter areas. After correction for multiple testing, significantly lower fractional anisotropy (FA) values were found in the corpus callosum and anterior commissure and significantly higher mean diffusivity values in the internal capsule. Focusing on the corpus callosum, we found that correlations between FA and number of errors on the RAWM test were significant after controlling for treatment. We further found that the effects of BCAS on cognition were partly mediated by its effects on white matter integrity. Immunofluorescence studies demonstrated significantly higher microglia cell density and soma size in the corpus callosum of BCAS mice compared to controls, and these parameters were correlated with the imaging data. The results of this study indicate that cognitive deficits induced by cerebral hypoperfusion due to BCAS result in part from microglia activation and disruption of white matter integrity, supporting the face and construct validity of this unique model of vascular dementia.


Subject(s)
Cognition/physiology , Dementia, Vascular/pathology , White Matter/pathology , Animals , Brain/pathology , Carotid Artery, Common/pathology , Carotid Stenosis/physiopathology , Cerebrovascular Circulation , Cognition Disorders/pathology , Cognitive Dysfunction/pathology , Corpus Callosum/pathology , Diffusion Tensor Imaging , Disease Models, Animal , Inflammation/pathology , Learning/physiology , Male , Memory Disorders/pathology , Mice , Mice, Inbred C57BL , Microglia/pathology
7.
Transl Psychiatry ; 8(1): 124, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29967406

ABSTRACT

The Abelson helper integration site 1 (Ahi1) gene plays a pivotal role in brain development and is associated with genetic susceptibility to schizophrenia, and other neuropsychiatric disorders. Translational research in genetically modified mice may reveal the neurobiological mechanisms of such associations. Previous studies of mice heterozygous for Ahi1 knockout (Ahi1+/-) revealed an attenuated anxiety response on various relevant paradigms, in the context of a normal glucocorticoid response to caffeine and pentylenetetrazole. Resting-state fMRI showed decreased amygdalar connectivity with various limbic brain regions and altered network topology. However, it was not clear from previous studies whether stress-hyporesponsiveness reflected resilience or, conversely, a cognitive-emotional deficit. The present studies were designed to investigate the response of Ahi1+/- mice to chronic unpredictable stress (CUS) applied over 9 weeks. Wild type (Ahi1+/+) mice were significantly affected by CUS, manifesting decreased sucrose preference (p < 0.05); reduced anxiety on the elevated plus maze and light dark box and decreased thigmotaxis in the open field (p < 0.01 0.05); decreased hyperthermic response to acute stress (p < 0.05); attenuated contextual fear conditioning (p < 0.01) and increased neurogenesis (p < 0.05). In contrast, Ahi1+/- mice were indifferent to the effects of CUS assessed with the same parameters. Our findings suggest that Ahi1 under-expression during neurodevelopment, as manifested by Ahi1+/- mice, renders these mice stress hyporesponsive. Ahi1 deficiency during development may attenuate the perception and/or integration of environmental stressors as a result of impaired corticolimbic connectivity or aberrant functional wiring. These neural mechanisms may provide initial clues as to the role Ahi1 in schizophrenia and other neuropsychiatric disorders.


Subject(s)
Anxiety/physiopathology , Brain/physiopathology , Proto-Oncogene Proteins/genetics , Stress, Psychological/genetics , Adaptor Proteins, Vesicular Transport , Animals , Behavior, Animal , Chronic Disease , Disease Models, Animal , Female , Genetic Predisposition to Disease , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis , Stress, Psychological/physiopathology
8.
Neuroscience ; 369: 152-167, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29138109

ABSTRACT

The MPTA (mesopontine tegmental anesthesia area) is a key node in a network of axonal pathways that collectively engage the key components of general anesthesia: immobility and atonia, analgesia, amnesia and loss-of-consciousness. In this study we have applied double retrograde tracing to analyze MPTA connectivity, with a focus on axon collateralization. Prior tracer studies have shown that collectively, MPTA neurons send descending projections to spinal and medullary brain targets associated with atonia and analgesia as well as ascending projections to forebrain structures associated with amnesia and arousal. Here we ask whether individual MPTA neurons collateralize broadly as might be expected of modulatory circuitry, sending axonal branches to both caudal and to rostral targets, or whether connectivity is more selective. Two distinguishable retrograde tracers were microinjected into pairs ("dyads") of known synaptic targets of the MPTA, one caudal and one rostral. We found that neurons that were double-labeled, and hence project to both targets were rare, constituting <0.5% on average of all MPTA neurons that project to these targets. The large majority sent axons either caudally, presumably to mediate mobility and/or antinociception, or rostrally, presumably to mediate mnemonic and/or arousal/cognitive functions. MPTA neurons with descending vs ascending projections also differed in size and shape, supporting the conclusion that they constitute distinct neuronal populations. From these and prior observations we conclude that the MPTA has a hybrid architecture including neurons with heterogeneous patterns of connectivity, some highly collateralized and some more targeted.


Subject(s)
Anesthetics/pharmacology , Axons/drug effects , Brain Stem/drug effects , Consciousness/drug effects , GABA Agonists/pharmacology , Neurons/drug effects , Animals , Antigens, Nuclear/metabolism , Axons/physiology , Brain Stem/cytology , Brain Stem/physiology , Consciousness/physiology , Female , Male , Nerve Tissue Proteins/metabolism , Neural Pathways/cytology , Neural Pathways/drug effects , Neural Pathways/physiology , Neuroanatomical Tract-Tracing Techniques , Neurons/cytology , Neurons/physiology , Rats, Wistar
9.
Front Aging Neurosci ; 9: 191, 2017.
Article in English | MEDLINE | ID: mdl-28670274

ABSTRACT

Bilateral common carotid artery stenosis (BCAS) models the effects of compromised cerebral blood flow on brain structure and function in mice. We compared the effects of BCAS in aged (21 month) and young adult (3 month) female mice, anticipating a differentially more severe effect in the older mice. Four weeks after surgery there was a significant age by time by treatment interaction on the radial-arm water maze (RAWM; p = 0.014): on the first day of the test, latencies of old mice were longer compared to the latencies of young adult mice, independent of BCAS. However, on the second day of the test, latencies of old BCAS mice were significantly longer than old control mice (p = 0.049), while latencies of old controls were similar to those of the young adult mice, indicating more severe impairment of hippocampal dependent learning and working memory by BCAS in the older mice. Fluorescence staining of myelin basic protein (MBP) showed that old age and BCAS both induced a significant decrease in fluorescence intensity. Evaluation of the number oligodendrocyte precursor cells demonstrated augmented myelin replacement in old BCAS mice (p < 0.05) compared with young adult BCAS and old control mice. While microglia morphology was assessed as normal in young adult control and young adult BCAS mice, microglia of old BCAS mice exhibited striking activation in the area of degraded myelin compared to young adult BCAS (p < 0.01) and old control mice (p < 0.05). These findings show a differentially more severe effect of cerebral hypoperfusion on cognitive function, myelin integrity and inflammatory processes in aged mice. Hypoperfusion may exacerbate degradation initiated by aging, which may induce more severe neuronal and cognitive phenotypes.

10.
Eur J Pain ; 15(3): 242-8, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20801063

ABSTRACT

Neuropathic pain is a chronic pain state resulting from peripheral nerve injury, characterized by hyperalgesia and allodynia. We have reported that mice with genetic impairment of IL-1 signaling display attenuated neuropathic pain behavior and ectopic neuronal activity. In order to substantiate the role of IL-1 in neuropathic pain, WT mice were implanted subcutaneously with osmotic micropumps containing either IL-1ra or vehicle. Two days following the implantation, two models of neuropathic pain were used; partial nerve injury (spinal nerve transection, SNT), or complete nerve cut (spinal neuroma model). Mechanosensitivity was assessed seven consecutive days following SNT, and on day 7 recordings of spontaneous ectopic activity were performed. In the spinal nerve neuroma model, autotomy scores were recorded up to 35 days. Vehicle-treated mice developed significant allodynia and autotomy, and clear ectopic activity (4.1±1.1% of the axons); whereas IL-1ra-treated mice did not display allodynic response, displayed delayed onset of autotomy and markedly reduced severity of autotomy scores, and displayed reduced spontaneous activity (0.8±0.4% of the axons). To test whether IL-1 is involved in maintenance of mechanical allodynia, a separate group of WT mice was treated with a single injection of either saline or IL-1ra four days following SNT, after the allodynic response was already manifested. Whereas saline-treated mice displayed robust allodynia, acute IL-1ra treatment induced long-lasting attenuation of the allodynic response. The results support our hypothesis that IL-1 signaling plays an important role in neuropathic pain and in the ectopic neuronal activity that underling its development.


Subject(s)
Interleukin 1 Receptor Antagonist Protein/therapeutic use , Neuralgia/drug therapy , Neurons/drug effects , Pain Threshold/drug effects , Receptors, Interleukin-1/antagonists & inhibitors , Spinal Nerves/injuries , Analysis of Variance , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Electrophysiology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1/genetics , Male , Mice , Mice, Transgenic , Neuralgia/genetics , Neuralgia/physiopathology , Neurons/physiology , Pain Measurement/drug effects , Pain Threshold/physiology , Physical Stimulation , Receptors, Interleukin-1/genetics , Spinal Nerves/physiopathology
11.
Brain Behav Immun ; 22(7): 1072-1077, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18442892

ABSTRACT

Postoperative incisional pain is characterized by persistent acute pain in the area of the cut, and is associated with release of proinflammatory cytokines, including interleukin-1 (IL-1), which play important hyperalgesic and allodynic roles in various inflammatory conditions. In the present study, we tested the role of IL-1 signaling in postoperative incisional pain using three mouse strains impaired in IL-1 signaling due to deletion of the IL-1 type I receptor on a mixed genetic background (IL-1rKO) or congenic background (IL-1rKOCog), or due to transgenic over-expression of IL-1 receptor antagonist (IL-1raTG). We used the relevant wild-type (WT) mice both as controls for the mutant strains, and for assessing the effects of pharmacological blockade of IL-1-signaling. Mechanosensitivity was assessed using the von-Frey filament test before, and up to 4 days following plantar incision, an animal model of postoperative pain. WT mice developed significant allodynia in the incised, compared with the intact, hind-paw beginning 3h after the incision and lasting up to 48h postoperatively. In contrast, IL-1rKO, IL-1rKOCog, and IL-1raTG mice, as well as WT mice chronically treated with IL-1ra, did not display increased mechanical pain sensitivity in either hind-paw. To test the hypothesis that IL-1-signaling is also involved in the maintenance of postoperative pain, WT mice were acutely treated with IL-1ra 24h following the incision, when allodynia was already evident. This treatment reversed the allodynic response throughout the observation period. Together, these findings suggest that IL-1 plays a critical role in the development and maintenance of postoperative incisional pain.


Subject(s)
Pain, Postoperative/physiopathology , Receptors, Interleukin-1/physiology , Signal Transduction/physiology , Animals , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/pharmacology , Female , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Interleukin 1 Receptor Antagonist Protein/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Pain Measurement/methods , Pain Threshold/drug effects , Pain, Postoperative/drug therapy , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
12.
Brain Behav Immun ; 22(2): 200-8, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17869478

ABSTRACT

Many neurotransmitters involved in pain perception transmit signals via G protein-coupled receptors (GPCRs). GPCR kinase 2 (GRK2) regulates agonist-induced desensitization and signaling of multiple GPCRs and interacts with downstream molecules with consequences for signaling. In general, low GRK2 levels are associated with increased responses to agonist stimulation of GPCRs. Recently, we reported that in mice with reduced GRK2 levels, inflammation-induced mechanical allodynia was increased. In addition, mice with impaired interleukin (IL)-1 beta signaling did not develop mechanical allodynia after L5 spinal nerve transection (SNT). We hypothesized that in the L5 SNT model mechanical allodynia would be associated with reduced neuronal GRK2 levels in the spinal cord dorsal horn and that IL-1 beta signaling would be required to induce both the decrease in GRK2 and mechanical allodynia. We show here that in wild type (WT) mice L5 SNT induces a bilateral decrease in neuronal GRK2 expression in the lumbar spinal cord dorsal horn, 1 and 2 weeks after L5 SNT. No changes in GRK2 were observed in the thoracic segments. Moreover, spinal cord GRK2 expression was not decreased in IL-1R(-/-) mice after L5 SNT. These data show that IL-1 beta signaling is not only required for the development of mechanical allodynia, but also to reduce neuronal GRK2 expression. These results suggest a functional relation between the L5 SNT-induced IL-1 beta-mediated decrease in GRK2 and development of mechanical allodynia.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/metabolism , Hyperalgesia/immunology , Interleukin-1beta/metabolism , Posterior Horn Cells/metabolism , Receptors, Interleukin-1 Type I/metabolism , Spinal Nerves/injuries , Animals , G-Protein-Coupled Receptor Kinase 2/genetics , Hyperalgesia/metabolism , Lumbar Vertebrae , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Pain Threshold/physiology , Physical Stimulation , Receptors, Interleukin-1 Type I/genetics , Signal Transduction/physiology
13.
Pain ; 120(3): 315-324, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16426759

ABSTRACT

Peripheral nerve injury may lead to neuropathic pain, which is often associated with mechanical and thermal allodynia, ectopic discharge of from injured nerves and from the dorsal root ganglion neurons, and elevated levels of proinflammatory cytokines, particularly interleukin-1 (IL-1). In the present study, we tested the role of IL-1 in neuropathic pain models using two mouse strains impaired in IL-1 signaling: Deletion of the IL-1 receptor type I (IL-1rKO) and transgenic over-expression of the IL-1 receptor antagonist (IL-1raTG). Neuropathy was induced by cutting the L5 spinal nerve on one side, following which mechanical and thermal pain sensitivity was measured. Wild-type (WT) mice and the parent strains developed significant allodynia and hyperalgesia in the hind-paw ipsilateral to the injury compared with the contralateral hind-paw. The mutant strains, however, did not display decreased pain threshold in either hind-paw. Pain behavior was also assessed by cutting the sciatic and saphenous nerves and measuring autotomy scores. WT mice developed progressive autotomy, beginning at 7 days post-injury, whereas the mutant strains displayed delayed onset of autotomy and markedly reduced severity of the autotomy score. Electrophysiological assessment revealed that in WT mice a significant proportion of the dorsal root axons exhibited spontaneous ectopic activity at 1, 3, and 7 days following spinal nerve injury, whereas in IL-1rKO and IL-1raTG mice only a minimal number of axons exhibited such activity. Taken together, these results suggest that IL-1 signaling plays an important role in neuropathic pain and in the altered neuronal activity that underlies its development.


Subject(s)
Action Potentials , Biological Clocks , Hyperalgesia/physiopathology , Interleukin-1/metabolism , Neurons, Afferent , Pain Threshold , Spinal Nerves/injuries , Animals , Interleukin-1/deficiency , Interleukin-1/genetics , Male , Mice , Mice, Knockout , Mutation , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism
14.
Anesth Analg ; 101(4): 1112-1116, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16192530

ABSTRACT

UNLABELLED: We examined the effects of two perioperative pain management techniques on recovery after laparotomy, as assessed by body weight (BW) and food consumption (FC). All rats received a preoperative intrathecal mixture of morphine plus bupivacaine combined with one of two treatments: (a) injection of slow-release morphine at the end of the surgery or (b) an antiinflammatory drug, interleukin-1 receptor antagonist (IL-1ra), combined with the preoperative mixture. Laparotomy significantly decreased FC and BW. Both analgesic treatments resulted in a faster recovery of FC and BW. This beneficial effect was more pronounced in the group receiving preoperative analgesics combined with IL-1ra. IMPLICATIONS: Effective perioperative pain management can improve postoperative recovery. We studied the effects of two preoperative pain management techniques on recovery after laparotomy in rats. Both analgesic treatments resulted in a faster recovery, especially preoperative analgesics combined with interleukin-1 receptor antagonist.


Subject(s)
Body Weight/drug effects , Bupivacaine/administration & dosage , Eating/drug effects , Laparotomy , Morphine/administration & dosage , Pain, Postoperative/prevention & control , Sialoglycoproteins/administration & dosage , Animals , Delayed-Action Preparations , Interleukin 1 Receptor Antagonist Protein , Male , Pain, Postoperative/physiopathology , Rats , Rats, Inbred F344
15.
Brain Res ; 1047(1): 10-7, 2005 Jun 14.
Article in English | MEDLINE | ID: mdl-15919064

ABSTRACT

Surgical stress is the combined result of tissue injury, anesthesia, and postoperative pain. It is characterized by elevated levels of adrenocorticotropin (ACTH), corticosterone (CS), and elevated levels of prostaglandin E2 (PGE2) in the periphery and in the spinal cord. The present study examined the effects of perioperative pain management in rats undergoing laparotomy on serum levels of ACTH, CS, and on the production of PGE2 in several brain regions, including the amygdala. The amygdala is known to modulate the pituitary-adrenal axis response to stress. We, therefore, also examined the effects of bilateral lesions in the central amygdala (CeA) on laparotomy-induced activation of the pituitary-adrenal axis in rats. In the first experiment, rats either underwent laparotomy or were not operated upon. Half the rats received preemptive analgesia extended postoperatively, the other received saline. ACTH, CS serum levels, and ex vivo brain production of PGE2 were determined. In the second experiment, rats underwent bilateral lesions of the CeA. Ten days later, rats underwent laparotomy, and ACTH and CS serum levels were determined. Laparotomy significantly increased amygdala PGE2 production, and CS and ACTH serum levels. This elevation was markedly attenuated by perioperative analgesia. Bilateral CeA lesions also attenuated the pituitary-adrenal response to surgical stress. The present findings suggest that the amygdala plays a regulatory role in mediating the neuroendocrine response to surgical stress. Effective perioperative analgesia attenuated the surgery-induced activation of pituitary-adrenal axis and PGE2 elevation. The diminished elevation of PGE2 may suggest a mechanism by which pain relief mitigates pituitary-adrenal axis activation.


Subject(s)
Amygdala/metabolism , Analgesics/pharmacology , Dinoprostone/metabolism , Pain, Postoperative/metabolism , Pituitary-Adrenal System/metabolism , Stress, Physiological/metabolism , Adrenal Cortex Hormones/blood , Adrenal Cortex Hormones/metabolism , Adrenocorticotropic Hormone/blood , Adrenocorticotropic Hormone/metabolism , Amygdala/drug effects , Amygdala/injuries , Analgesics/therapeutic use , Animals , Denervation , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Laparotomy/adverse effects , Male , Pain, Postoperative/drug therapy , Pain, Postoperative/physiopathology , Pituitary-Adrenal System/drug effects , Postoperative Care/standards , Rats , Rats, Inbred F344 , Stress, Physiological/physiopathology , Stress, Physiological/prevention & control
16.
Pain ; 115(1-2): 50-9, 2005 May.
Article in English | MEDLINE | ID: mdl-15836969

ABSTRACT

Pain sensitivity reflects a balance between pain facilitatory and inhibitory systems. To characterize the relationships between these systems we examined the interactions between the analgesic effects of morphine and the anti-analgesic effects of the pro-inflammatory cytokine interleukin-1 (IL-1). We report that administration of a neutral dose of IL-1beta abolished morphine analgesia in mice, whereas acute or chronic blockade of IL-1 signaling by various IL-1 blockers (IL-1 receptor antagonist (IL-1ra), alpha-melanocyte-stimulating hormone, or IL-1 tri-peptide antagonist) significantly prolonged and potentiated morphine analgesia. Morphine-induced analgesia was also extended in strains of mice genetically impaired in IL-1 signaling (mice with transgenic over-expression of IL-1 receptor antagonist, deletion of the IL-1 receptor type I, or deletion of the IL-1 receptor accessory protein). The finding that IL-1 produces a marked anti-analgesic effect, suggests that it may also be involved in the development of opiate tolerance. Indeed, genetic or pharmacological blockade of IL-1 signaling prevented the development of tolerance following repeated morphine administration. Moreover, acute administration of IL-1ra in wild type mice, either immediately following the cessation of acute morphine analgesia, or following the development of chronic morphine tolerance, re-instated the analgesia, suggesting that blockade of the IL-1 system unmasks the analgesic effect of morphine. These findings suggest that morphine produces an IL-1-mediated homeostatic response, which serves to limit the duration and extent of morphine analgesia and which underlies the development of tolerance.


Subject(s)
Analgesia/methods , Analgesics, Opioid/administration & dosage , Interleukin-1/antagonists & inhibitors , Interleukin-1/metabolism , Morphine/administration & dosage , Pain Threshold/drug effects , Pain/drug therapy , Pain/metabolism , Animals , Dose-Response Relationship, Drug , Drug Tolerance , Male , Mice , Mice, Inbred C57BL , Pain/diagnosis
17.
Pain ; 104(3): 471-480, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12927619

ABSTRACT

The cytokine interleukin-1 (IL-1) has been implicated in modulation of pain perception under various inflammatory conditions. The present study examined the hypothesis that IL-1 signaling is also involved in pain sensitivity under normal, non-inflammatory states, using three mouse models of impaired IL-1 signaling: targeted deletion of the IL-1 receptor type I or the IL-1 receptor accessory protein, and transgenic over-expression of IL-1 receptor antagonist within the brain and spinal cord. Thermal and mechanical pain sensitivity was assessed using the paw-flick, hot-plate, and von Frey tests. All mutant strains displayed significantly lower pain sensitivity, compared with their respective wild-type control strains, and with their parent strains (C57BL/6, CBA and 129), in all tests. In contrast, mice with targeted deletion of the p55 or p75 TNF receptor, or of interleukin-18, displayed normal or higher pain sensitivity compared to their respective controls. To differentiate between developmental vs. on-going effects of IL-1, mice were chronically treated with IL-1 receptor antagonist (IL-1ra) via osmotic micropumps, either in adulthood or prenatally (throughout the last 2 weeks of gestation). Adult mice that were treated with IL-1ra either in adulthood or in utero, displayed lower pain sensitivity, similar to mice with impaired IL-1 signaling. These findings suggest that basal pain sensitivity is genetically, developmentally and tonically influenced by IL-1 signaling.


Subject(s)
Interleukin-1/deficiency , Interleukin-1/genetics , Pain Measurement/methods , Pain/genetics , Signal Transduction/genetics , Animals , Down-Regulation/genetics , Female , Interleukin 1 Receptor Antagonist Protein , Interleukin-1/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Mice, Transgenic , Pain/physiopathology , Receptors, Interleukin-1/antagonists & inhibitors , Sialoglycoproteins/administration & dosage , Tumor Necrosis Factor-alpha/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...