Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Evol Lett ; 4(2): 164-175, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32313691

ABSTRACT

Group-beneficial behaviors have presented a long-standing challenge for evolutionary theory because, although their benefits are available to all group members, their costs are borne by individuals. Consequently, an individual could benefit from "cheating" their group mates by not paying the costs while still reaping the benefits. There have been many proposed evolutionary mechanisms that could favor cooperation (and disfavor cheating) in particular circumstances. However, if cooperation is still favored in some circumstances, then we might expect evolution to favor strategic cooperation, where the level of contribution toward group-beneficial behavior is varied in response to the social context. To uncover how and why individuals should contribute toward group-beneficial behavior across social contexts, we model strategic cooperation as an evolutionary game where players can quantitatively adjust the amount they contribute toward group-beneficial behavior. We find that the evolutionarily stable strategy (ESS) predicts, unsurprisingly, that players should contribute in relation to their relatedness to the group. However, we surprisingly find that players often contribute to cooperation in such a way that their fitness is inverse to their relatedness to the group such that those that contribute to cooperation end up with the same return from group-beneficial behavior, essentially removing any potential advantage of higher relatedness. These results bring to light a paradox of group-beneficial cooperation: groups do best when they contain highly related individuals, but those with the highest relatedness to the group will often have the lowest fitness within the group.

2.
Nat Commun ; 9(1): 4836, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30446730

ABSTRACT

A central paradigm in conservation biology is that population bottlenecks reduce genetic diversity and population viability. In an era of biodiversity loss and climate change, understanding the determinants and consequences of bottlenecks is therefore an important challenge. However, as most studies focus on single species, the multitude of potential drivers and the consequences of bottlenecks remain elusive. Here, we combined genetic data from over 11,000 individuals of 30 pinniped species with demographic, ecological and life history data to evaluate the consequences of commercial exploitation by 18th and 19th century sealers. We show that around one third of these species exhibit strong signatures of recent population declines. Bottleneck strength is associated with breeding habitat and mating system variation, and together with global abundance explains much of the variation in genetic diversity across species. Overall, bottleneck intensity is unrelated to IUCN status, although the three most heavily bottlenecked species are endangered. Our study reveals an unforeseen interplay between human exploitation, animal biology, demographic declines and genetic diversity.


Subject(s)
Caniformia/genetics , Genetic Variation , Models, Statistical , Animals , Caniformia/classification , Conservation of Natural Resources , Ecosystem , Genotyping Techniques , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Humans , Microsatellite Repeats , Population Dynamics/history
4.
Mol Ecol Resour ; 16(4): 909-21, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26683564

ABSTRACT

Custom genotyping arrays provide a flexible and accurate means of genotyping single nucleotide polymorphisms (SNPs) in a large number of individuals of essentially any organism. However, validation rates, defined as the proportion of putative SNPs that are verified to be polymorphic in a population, are often very low. A number of potential causes of assay failure have been identified, but none have been explored systematically. In particular, as SNPs are often developed from transcriptomes, parameters relating to the genomic context are rarely taken into account. Here, we assembled a draft Antarctic fur seal (Arctocephalus gazella) genome (assembly size: 2.41 Gb; scaffold/contig N50 : 3.1 Mb/27.5 kb). We then used this resource to map the probe sequences of 144 putative SNPs genotyped in 480 individuals. The number of probe-to-genome mappings and alignment length together explained almost a third of the variation in validation success, indicating that sequence uniqueness and proximity to intron-exon boundaries play an important role. The same pattern was found after mapping the probe sequences to the Walrus and Weddell seal genomes, suggesting that the genomes of species divergent by as much as 23 million years can hold information relevant to SNP validation outcomes. Additionally, reanalysis of genotyping data from seven previous studies found the same two variables to be significantly associated with SNP validation success across a variety of taxa. Finally, our study reveals considerable scope for validation rates to be improved, either by simply filtering for SNPs whose flanking sequences align uniquely and completely to a reference genome, or through predictive modelling.


Subject(s)
Diagnostic Errors , Fur Seals/classification , Fur Seals/genetics , Genetics, Population/methods , Genome , Genotyping Techniques/methods , Polymorphism, Single Nucleotide , Animals , Sequence Analysis, DNA , Validation Studies as Topic
5.
Mol Ecol ; 24(18): 4617-28, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26302355

ABSTRACT

Animal coloration is one of the most conspicuous phenotypic traits in natural populations and has important implications for adaptation and speciation. Changes in coloration can occur over surprisingly short evolutionary timescales, while recurrence of similar colour patterns across large phylogenetic distances is also common. Even though the genetic basis of pigment production is well understood, little is known about the mechanisms regulating colour patterning. In this study, we shed light on the molecular elements regulating regional pigment production in two genetically near-identical crow taxa with striking differences in a eumelanin-based phenotype: black carrion and grey-coated hooded crows. We produced a high-quality genome annotation and analysed transcriptome data from a 2 × 2 design of active melanogenic feather follicles from head (black in both taxa) and torso (black in carrion and grey in hooded crow). Extensive, parallel expression differences between body regions in both taxa, enriched for melanogenesis genes (e.g. ASIP, CORIN, and ALDH6), indicated the presence of cryptic prepatterning also in all-black carrion crows. Meanwhile, colour-specific expression (grey vs. black) was limited to a small number of melanogenesis genes in close association with the central transcription factor MITF (most notably HPGDS, NDP and RASGRF1). We conclude that colour pattern differences between the taxa likely result from an interaction between divergence in upstream elements of the melanogenesis pathway and genes that provide an underlying prepattern across the body through positional information. A model of evolutionary stable prepatterns that can be exposed and masked through simple regulatory changes may explain the phylogenetically independent recurrence of colour patterns that is observed across corvids and many other vertebrate groups.


Subject(s)
Crows/genetics , Pigmentation/genetics , Transcriptome , Animals , Biological Evolution , Feathers , Male , Melanins/genetics , Phenotype , Sequence Analysis, RNA
6.
J Evol Biol ; 28(3): 535-46, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25611126

ABSTRACT

Parasites exert a major impact on the eco-evolutionary dynamics of their hosts and the associated biotic environment. Migration constitutes an effective means for long-distance invasions of vector-borne parasites and promotes their rapid spread. Yet, ecological and spatial information on population-specific host-parasite connectivity is essentially lacking. Here, we address this question in a system consisting of a transcontinental migrant species, the European barn swallow (Hirundo rustica) which serves as a vector for avian endoparasites in the genera Plasmodium, Haemoproteus and Leucocytozoon. Using feather stable isotope ratios as geographically informative markers, we first assessed migratory connectivity in the host: Northern European breeding populations predominantly overwintered in dry, savannah-like habitats in Southern Africa, whereas Southern European populations were associated with wetland habitats in Western Central Africa. Wintering areas of swallows breeding in Central Europe indicated a migratory divide with both migratory programmes occurring within the same breeding population. Subsequent genetic screens of parasites in the breeding populations revealed a link between the host's migratory programme and its parasitic repertoire: controlling for effects of local breeding location, prevalence of Africa-transmitted Plasmodium lineages was significantly higher in individuals overwintering in the moist habitats of Western Central Africa, even among sympatrically breeding individuals with different overwintering locations. For the rarer Haemoproteus parasites, prevalence was best explained by breeding location alone, whereas no clear pattern emerged for the least abundant parasite Leucocytozoon. These results have implications for our understanding of spatio-temporal host-parasite dynamics in migratory species and the spread of avian borne diseases.


Subject(s)
Bird Diseases/parasitology , Haemosporida/physiology , Host-Parasite Interactions , Plasmodium/physiology , Swallows/parasitology , Africa, Southern , Animal Migration , Animals , Bird Diseases/epidemiology , Bird Diseases/transmission , Carbon Isotopes/analysis , Europe , Haemosporida/genetics , Haemosporida/pathogenicity , Malaria, Avian/epidemiology , Malaria, Avian/parasitology , Plasmodium/genetics , Plasmodium/pathogenicity
7.
Heredity (Edinb) ; 113(2): 93-5, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25026988
8.
Science ; 344(6190): 1410-4, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24948738

ABSTRACT

The importance, extent, and mode of interspecific gene flow for the evolution of species has long been debated. Characterization of genomic differentiation in a classic example of hybridization between all-black carrion crows and gray-coated hooded crows identified genome-wide introgression extending far beyond the morphological hybrid zone. Gene expression divergence was concentrated in pigmentation genes expressed in gray versus black feather follicles. Only a small number of narrow genomic islands exhibited resistance to gene flow. One prominent genomic region (<2 megabases) harbored 81 of all 82 fixed differences (of 8.4 million single-nucleotide polymorphisms in total) linking genes involved in pigmentation and in visual perception-a genomic signal reflecting color-mediated prezygotic isolation. Thus, localized genomic selection can cause marked heterogeneity in introgression landscapes while maintaining phenotypic divergence.


Subject(s)
Crows/genetics , Feathers/cytology , Gene Flow , Genetic Variation , Melanocytes/enzymology , Pigmentation/genetics , Animals , Evolution, Molecular , Feathers/enzymology , Genomics , Hybridization, Genetic , Phenotype , Polymorphism, Single Nucleotide , Selection, Genetic
9.
Heredity (Edinb) ; 113(2): 119-28, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24755983

ABSTRACT

The epigenetic phenomenon of genomic imprinting has motivated the development of numerous theories for its evolutionary origins and genomic distribution. In this review, we examine the three theories that have best withstood theoretical and empirical scrutiny. These are: Haig and colleagues' kinship theory; Day and Bonduriansky's sexual antagonism theory; and Wolf and Hager's maternal-offspring coadaptation theory. These theories have fundamentally different perspectives on the adaptive significance of imprinting. The kinship theory views imprinting as a mechanism to change gene dosage, with imprinting evolving because of the differential effect that gene dosage has on the fitness of matrilineal and patrilineal relatives. The sexual antagonism and maternal-offspring coadaptation theories view genomic imprinting as a mechanism to modify the resemblance of an individual to its two parents, with imprinting evolving to increase the probability of expressing the fitter of the two alleles at a locus. In an effort to stimulate further empirical work on the topic, we carefully detail the logic and assumptions of all three theories, clarify the specific predictions of each and suggest tests to discriminate between these alternative theories for why particular genes are imprinted.


Subject(s)
Biological Evolution , Genomic Imprinting , Adaptation, Biological , Animals , Female , Gene Dosage , Gene Expression Regulation , Humans , Male , Models, Genetic , Organ Specificity/genetics , Selection, Genetic
10.
Heredity (Edinb) ; 113(2): 129-37, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24619179

ABSTRACT

Numerous evolutionary theories have been developed to explain the epigenetic phenomenon of genomic imprinting. Here, we explore a subset of theories wherein non-additive genetic interactions can favour imprinting. In the simplest genic interaction--the case of underdominance--imprinting can be favoured to hide effectively low-fitness heterozygous genotypes; however, as there is no asymmetry between maternally and paternally inherited alleles in this model, other means of enforcing monoallelic expression may be more plausible evolutionary outcomes than genomic imprinting. By contrast, more successful interaction models of imprinting rely on an asymmetry between the maternally and paternally inherited alleles at a locus that favours the silencing of one allele as a means of coordinating the expression of high-fitness allelic combinations. For example, with interactions between autosomal loci, imprinting functionally preserves high-fitness genotypes that were favoured by selection in the previous generation. In this scenario, once a focal locus becomes imprinted, selection at interacting loci favours a matching imprint. Uniparental transmission generates similar asymmetries for sex chromosomes and cytoplasmic factors interacting with autosomal loci, with selection favouring the expression of either maternal or paternally derived autosomal alleles depending on the pattern of transmission of the uniparentally inherited factor. In a final class of models, asymmetries arise when genes expressed in offspring interact with genes expressed in one of its parents. Under such a scenario, a locus evolves to have imprinted expression in offspring to coordinate the interaction with its parent's genome. We illustrate these models and explore key links and differences using a unified framework.


Subject(s)
Biological Evolution , Epistasis, Genetic , Genomic Imprinting , Adaptation, Biological , Animals , Female , Gene Expression Regulation , Genes, Dominant , Humans , Male , Models, Genetic
11.
Heredity (Edinb) ; 113(2): 167-75, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24619185

ABSTRACT

Diverse mechanisms contribute to the evolution of reproductive barriers, a process that is critical in speciation. Amongst these are alterations in gene products and in gene dosage that affect development and reproductive success in hybrid offspring. Because of its strict parent-of-origin dependence, genomic imprinting is thought to contribute to the aberrant phenotypes observed in interspecies hybrids in mammals and flowering plants, when the abnormalities depend on the directionality of the cross. In different groups of mammals, hybrid incompatibility has indeed been linked to loss of imprinting. Aberrant expression levels have been reported as well, including imprinted genes involved in development and growth. Recent studies in humans emphasize that genetic diversity within a species can readily perturb imprinted gene expression and phenotype as well. Despite novel insights into the underlying mechanisms, the full extent of imprinted gene perturbation still remains to be determined in the different hybrid systems. Here we review imprinted gene expression in intra- and interspecies hybrids and examine the evolutionary scenarios under which imprinting could contribute to hybrid incompatibilities. We discuss effects on development and reproduction and possible evolutionary implications.


Subject(s)
Chimera/genetics , Gene Expression , Genomic Imprinting , Alleles , Animals , Biological Evolution , Gene Expression Regulation , Genome , Humans , Mammals/genetics , Models, Genetic , Polymorphism, Genetic
12.
Heredity (Edinb) ; 111(6): 467-73, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23881172

ABSTRACT

Colouration patterns have an important role in adaptation and speciation. The European crow system, in which all-black carrion crows and grey-coated hooded crows meet in a narrow hybrid zone, is a prominent example. The marked phenotypic difference is maintained by assortative mating in the absence of neutral genetic divergence, suggesting the presence of few pigmentation genes of major effect. We made use of the rich phenotypic and genetic resources in mammals and identified a comprehensive panel of 95 candidate pigmentation genes for birds. Based on functional annotation, we chose a subset of the most promising 37 candidates, for which we developed a marker system that demonstrably works across the avian phylogeny. In total, we sequenced 107 amplicons (∼3 loci per gene, totalling 60 kb) in population samples of crows (n=23 for each taxon). Tajima's D, Fu's FS, DHEW and HKA (Hudson-Kreitman-Aguade) statistics revealed several amplicons that deviated from neutrality; however, none of these showed significantly elevated differentiation between the two taxa. Hence, colour divergence in this system may be mediated by uncharacterized pigmentation genes or regulatory regions outside genes. Alternatively, the observed high population recombination rate (4Ner∼0.03), with overall linkage disequilibrium dropping rapidly within the order of few 100 bp, may compromise the power to detect causal loci with nearby markers. Our results add to the debate as to the utility of candidate gene approaches in relation to genomic features and the genetic architecture of the phenotypic trait in question.


Subject(s)
Avian Proteins/genetics , Crows/genetics , Genetic Speciation , Genetic Variation , Linkage Disequilibrium , Pigments, Biological/genetics , Animals , Crows/classification , Phylogeny , Pigmentation
13.
J Evol Biol ; 26(2): 229-46, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23323997

ABSTRACT

Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near-instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial contexts within a single speciation event. We offer a perspective on the context and evolutionary significance of hybridization during speciation, highlighting issues of current interest and debate. In secondary contact zones, it is uncertain if barriers to gene flow will be strengthened or broken down due to recombination and gene flow. Theory and empirical evidence suggest the latter is more likely, except within and around strongly selected genomic regions. Hybridization may contribute to speciation through the formation of new hybrid taxa, whereas introgression of a few loci may promote adaptive divergence and so facilitate speciation. Gene regulatory networks, epigenetic effects and the evolution of selfish genetic material in the genome suggest that the Dobzhansky-Muller model of hybrid incompatibilities requires a broader interpretation. Finally, although the incidence of reinforcement remains uncertain, this and other interactions in areas of sympatry may have knock-on effects on speciation both within and outside regions of hybridization.


Subject(s)
Genetic Speciation , Hybridization, Genetic , Adaptation, Physiological , Animals , Gene Flow , Phenotype
14.
Heredity (Edinb) ; 108(5): 515-20, 2012 May.
Article in English | MEDLINE | ID: mdl-22126849

ABSTRACT

Research on phenotypic plasticity has often focused on how a given genotype responds to the changing physical environments such as temperature or diet. However, for many species the social environment has an equally important role because of competition for resources. During early development, the level of competition for limited (maternally provided) resources will often depend critically on the number of siblings. Therefore, competition among siblings should drive the evolution of genes that allow flexible responses to realized levels of competition and maternal resource availability. However, it is unknown whether genetically based differences between individuals exist in their response to the social environment that affect their future development. Using a quantitative trait locus approach in an experimental population of mice we demonstrate that effects of sibling number on body weight depend on individual genotype at seven loci, over and above the general negative litter size effect. Overall, these litter size-by-genotype interactions considerably modified the degree to which increasing litter size caused reduced weight. For example at one locus this effect leads to a 7% difference in body weight at week 7 between individuals experiencing the extremes of the normal range of litter sizes in our population (five to nine litter mates). The observed interaction between genotype and the competitive environment can produce differences in body weight that are similar in magnitude to the main effect of litter size on weight. Our results show that different genotypes respond to the social environment differentially and that interaction effects of genotype with litter size can be as important as genotype-independent effects of litter size.


Subject(s)
Mice/genetics , Quantitative Trait Loci , Sibling Relations , Animals , Behavior, Animal , Female , Genotype , Litter Size , Male , Mice/physiology
15.
Ophthalmic Physiol Opt ; 30(5): 460-9, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20883329

ABSTRACT

Stomatopod crustaceans have the most complex assemblage of visual receptor classes known; retinas of many species are thought to express up to 16 different visual pigments. Physiological studies indicate that stomatopods contain up to six distinct middle-wavelength-sensitive (MWS) photoreceptor classes, suggesting that no more than six different MWS opsin gene copies exist per species. However, we previously reported the unexpected expression of 6-15 different MWS genes in retinas of each of five stomatopod species (Visual Neurosci 26: 255-266, 2009). Here, we present a review of the results reported in this publication, plus new results that shed light on the origins of the diverse colour and polarization visual capabilities of stomatopod crustaceans. Using in situ hybridization of opsins in photoreceptor cells, we obtained new results that support the hypothesis of an ancient functional division separating spatial and polarizational vision from colour vision in the stomatopods. Since evolutionary trace analysis indicates that stomatopod MWS opsins have diverged both with respect to spectral tuning and to cytoplasmic interactions, we have now further analyzed these data in an attempt to uncover the origins, diversity and potential specializations among clades for specific visual functions. The presence of many clusters of highly similar transcripts suggests exuberant opsin gene duplication has occurred in the stomatopods, together with more conservative, ancient gene duplication events within the stem crustacean lineage. Phylogenetic analysis of opsin relatedness suggests that opsins specialized for colour vision have diverged from those devoted to polarization vision, and possibly motion and spatial vision.


Subject(s)
Color Vision/genetics , Crustacea/genetics , Evolution, Molecular , Animals , Color Vision/physiology , Crustacea/classification , Crustacea/physiology , Genetic Variation , In Situ Hybridization/methods , Opsins/genetics , Photoreceptor Cells, Invertebrate/physiology , Phylogeny , Visual Perception/genetics , Visual Perception/physiology
16.
J Evol Biol ; 23(8): 1664-71, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20546090

ABSTRACT

When individuals interact, phenotypic variation can be partitioned into direct genetic effects (DGEs) of the individuals' own genotypes, indirect genetic effects (IGEs) of their social partners' genotypes and epistatic interactions between the genotypes of interacting individuals ('genotype-by-genotype (GxG) epistasis'). These components can all play important roles in evolutionary processes, but few empirical studies have examined their importance. The social amoeba Dictyostelium discoideum provides an ideal system to measure these effects during social interactions and development. When starved, free-living amoebae aggregate and differentiate into a multicellular fruiting body with a dead stalk that holds aloft viable spores. By measuring interactions among a set of natural strains, we quantify DGEs, IGEs and GxG epistasis affecting spore formation. We find that DGEs explain most of the phenotypic variance (57.6%) whereas IGEs explain a smaller (13.3%) but highly significant component. Interestingly, GxG epistasis explains nearly a quarter of the variance (23.0%), highlighting the complex nature of genotype interactions. These results demonstrate the large impact that social interactions can have on development and suggest that social effects should play an important role in developmental evolution in this system.


Subject(s)
Dictyostelium/physiology , Models, Genetic , Dictyostelium/genetics , Dictyostelium/growth & development , Genotype , Phenotype , Spores, Protozoan/physiology
17.
Genome Biol Evol ; 2: 19-28, 2010 Jan 06.
Article in English | MEDLINE | ID: mdl-20333222

ABSTRACT

Local variation in neutral substitution rate across mammalian genomes is governed by several factors, including sequence context variables and structural variables. In addition, the interplay of replication and transcription, known to induce a strand bias in mutation rate, gives rise to variation in substitutional strand asymmetries. Here, we address the conservation of variation in mutation rate and substitutional strand asymmetries using primate- and rodent-specific repeat elements located within the introns of protein-coding genes. We find significant but weak conservation of local mutation rates between human and mouse orthologs. Likewise, substitutional strand asymmetries are conserved between human and mouse, where substitution rate asymmetries show a higher degree of conservation than mutation rate. Moreover, we provide evidence that replication and transcription are correlated to the strength of substitutional asymmetries. The effect of transcription is particularly visible for genes with highly conserved gene expression. In comparison with replication and transcription, mutation rate influences the strength of substitutional asymmetries only marginally.

18.
J Evol Biol ; 22(12): 2519-23, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19878407

ABSTRACT

Mothers can determine which genotypes of offspring they will produce through selective abortion or selective implantation. This process can, at some loci, favour matching between maternal and offspring genotype whereas at other loci mismatching may be favoured (e.g. MHC, HLA). Genomic imprinting generally renders gene expression monoallelic and could thus be adaptive at loci where matching or mismatching is beneficial. This hypothesis, however, remains unexplored despite evidence that loci known to play a role in genetic compatibility may be imprinted. We develop a simple model demonstrating that, when matching is beneficial, imprinting with maternal expression is adaptive because the incompatible paternal allele is not detected, protecting offspring from selective abortion. Conversely, when mismatching is beneficial, imprinting with paternal expression is adaptive because the maternal genotype is more able to identify the presence of a foreign allele in offspring. Thus, imprinting may act as a genomic 'cloaking device' during critical periods in development when selective abortion is possible.


Subject(s)
Abortion, Veterinary/genetics , Biological Evolution , Genomic Imprinting , Genotype , Models, Genetic , Animals , Female , Pregnancy
19.
Heredity (Edinb) ; 101(6): 518-26, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18685568

ABSTRACT

Genomic imprinting refers to the pattern of monoallelic parent-of-origin-dependent gene expression where one of the two alleles at a locus is expressed and the other silenced. Although some genes in mice are known to be imprinted, the true scope of imprinting and its impact on the genetic architecture of a wide range of morphometric traits is mostly unknown. We therefore searched for quantitative trait loci (QTL) exhibiting imprinting effects on mandible size and shape traits in a large F(3) population of mice originating from an intercross of the LG/J (Large) and SM/J (Small) inbred strains. We discovered a total of 51 QTL affecting mandible size and shape, 6 of which exhibited differences between reciprocal heterozygotes, the usual signature of imprinting effects. However, our analysis showed that only one of these QTL (affecting mandible size) exhibited a pattern consistent with true imprinting effects, whereas reciprocal heterozygote differences in the other five all were due to maternal genetic effects. We concluded that genomic imprinting has a negligible effect on these specific morphometric traits, and that maternal genetic effects may account for many of the previously reported instances of apparent genomic imprinting.


Subject(s)
Mandible/anatomy & histology , Mandible/metabolism , Mice/genetics , Quantitative Trait Loci , Animals , Crosses, Genetic , Female , Genomic Imprinting , Male , Mice/anatomy & histology , Mice, Inbred Strains , Organ Size
SELECTION OF CITATIONS
SEARCH DETAIL
...