Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Drug Test Anal ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38155431

ABSTRACT

Forensic analysis can encompass a wide variety of analytes from biological samples including DNA, blood, serum, and fingerprints to synthetic samples like drugs and explosives. In order to analyze this variety, there are various sample preparation techniques, which can be time-consuming and require multiple analytical instruments. With recent advancements in ambient ionization mass spectrometry (MS), plasma-based dielectric barrier discharge ionization (DBDI) sources have demonstrated to cover a wide range of these analytes. The flow-through design of this source also allows for easy connection to a thermal desorption type of sample introduction. We present an in-house built thermal desorption device where the sample is introduced via a glass slide, which gets heated and transferred to the DBDI-MS with nitrogen for identification and semi-quantification. Using a glass slide as an inexpensive sampling device, detection limits as low as 20 pg for fentanyl are demonstrated. Additionally, a very precise (>96% accuracy) identification of persons based on the chemical profile of their fingerprints is possible, establishing a direct analytical link of the drug trace to the individual in one measurement. We compared the DAG, TAG, sterol, and (semi-)volatile region of the averaged fingerprint spectra over multiple days, showing the best model accuracy for identification based on the DAG region. The combination of thermal desorption and DBDI-MS minimized sample preparation, leading to an ultrasensitive and rapid analysis of illicit drug traces and the identification of underlying personas based on fingerprints.

2.
J Am Soc Mass Spectrom ; 34(4): 538-549, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36827232

ABSTRACT

Cold plasma-based ionization techniques allow for soft ionization of a wide variety of chemical compounds. In this chemical ionization mechanism, the atmosphere plays a crucial role in ionization. Knowing its influence is critical for the optimization of analysis conditions and interpretation of resulting spectra. This study uses soft ionization by chemical reaction in transfer (SICRIT), a variant of dielectric barrier discharge ionization (DBDI), that allows for a controlled atmosphere to investigate atmosphere and dopant effects. The influence of eight makeup gas compositions (dry nitrogen, room air, and nitrogen-enriched with either water, HCl, MeOH, hexane, NH3, and fluorobenzene) on the ionization with SICRIT was investigated. Fifteen compound classes, comprising alkanes, polyaromatic hydrocarbons (PAHs), terpenes, oxygen-containing terpenes, alkylphenols, chlorophenols, nitrophenols, trialkylamines, triazines, phthalates with or without ether groups, aldehydes, ketones, fatty acid methyl esters (FAMEs), and polyoxy-methylene ethers (OMEs) were measured via gas chromatography SICRIT high-resolution mass spectrometry (GC-SICRIT-HRMS). The different atmospheres were compared in terms of generated ions, ion intensities and fragmentation during ionization. Measurements of reactant ions were performed for a better understanding of the underlying mechanisms. All 15 compound classes were mostly softly ionized. For most compound classes and atmospheres, protonation is the dominant ionization mode. The highest number of compounds ionized via protonation was observed in dry nitrogen, followed by room air and humid nitrogen. The study should work as a guideline for the choice of atmosphere for specific compound classes and the interpretation of spectra generated under a specific atmosphere.

3.
Anal Chim Acta ; 1177: 338770, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34482891

ABSTRACT

The plug-and-play hyphenation of UV-laser ablation (LA) and mass spectrometry is presented, using dielectric barrier discharge ionization (DBDI). The DBDI source employed here is characterized by its unique geometry, being directly mounted onto the inlet capillary of a mass spectrometer. In the literature, this particular kind of DBDI source is also referred to as active capillary plasma ionization. It has been commercialized as soft ionization by chemical reaction in transfer (SICRIT) and will be addressed as DBDI in this study. LA-DBDI-MS was used for the direct, molecule-specific and spatially resolved analysis of various solid samples, such as coffee beans and pain killer tablets without extensive sample preparation. The combination of fast washout UV-laser ablation and the principle of the DBDI source used here allowed for highly efficient soft ionization as well as high spatial resolution down to 10 µm for molecular imaging.


Subject(s)
Laser Therapy , Mass Spectrometry , Molecular Imaging
4.
J Am Soc Mass Spectrom ; 32(7): 1707-1715, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34170138

ABSTRACT

Soft ionization by a chemical reaction in transfer (SICRIT) is applied to couple gas chromatography (GC) to a high-resolution atmospheric pressure inlet mass spectrometer. These instruments are generally used in combination with liquid chromatography systems (LC-MS). Ionization of alkanes is not possible here with conventional electrospray ionization. Alternatively, separate GC-electron ionization (EI)-MS is employed for the analysis of nonpolar substances like alkanes, however, with the inherent challenge of strong fragmentation. In the case of alkanes, the determination of molecular masses becomes nearly impossible in complex hydrocarbon mixtures because of the wealth of similar fragment ions and the absence of the molecular ion signal. SICRIT, a soft ionization technique based on dielectric barrier discharge (DBDI), produces characteristic oxidized cations from alkanes that can be directly correlated to their molecular mass. Isotope labeling experiments reveal an ionization mechanism via hydride abstraction and reaction with water. Soft ionization can be achieved for iso- and n-alkanes, with very little fragmentation, enabling the determination of their molecular mass. Calibrations for n-alkanes from C10 to C30 were performed exhibiting high linearity, reproducibility, and sensitivity with an average LOD of 69 pg (on column). Measurements of diesel fuel samples are compared to traditional GC-EI-MS. The presented method combines sensitivity and easy handling of a GC-EI-MS with the determination of molecular mass commonly only achieved with field ionization (FI)-MS, while using existing and highly optimized mass spectrometers commonly coupled with LC. Additionally, many other analytes such as (alkylated-) PAHs could be detected simultaneously in the diesel sample.

5.
Anal Chem ; 92(23): 15285-15290, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33175489

ABSTRACT

Atmospheric pressure ionization methods confer a number of advantages over more traditional vacuum based techniques, in particular ease of hyphenation to a range of mass spectrometers. For atmospheric pressure matrix assisted desorption/ionization (AP-MALDI), several ion sources, operating in a range of geometries have been reported. Most of these platforms have, to date, generally demonstrated relatively low ion yields and/or poor ion transmission compared to vacuum sources. To improve the detection of certain ions, we have developed a second-generation transmission mode (TM) AP-MALDI imaging platform with in-line plasma postionization using the commercially available SICRIT device, replacing the previously used low temperature plasma probe from our developmental AP-TM-MALDI stage. Both plasma devices produce a significant ionization enhancement for a range of compounds, but the overall higher enhancement obtained by the SICRIT device in addition to the ease of installation and the minimal need for optimization presents this commercially available tool as an attractive method for simple postionization in AP-MALDI MSI.

6.
Anal Chem ; 90(4): 2725-2731, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29356499

ABSTRACT

Perfluorinated compounds have unique properties and many practical applications, but are difficult to ionize efficiently with soft ionization methods. An active capillary plasma ionization source based on dielectric barrier discharge ionization (DBDI) coupled with mass spectrometry was used to study the ionization pathway of perfluorinated compounds (PFCs), with the aim of both increasing the ionization efficiency and influencing the selectivity for generating product ions in negative ion mode. Cyclic and linear perfluorinated alkanes were found to mainly form [M - F]- and [M - F + O]- ions, respectively; the [M]-• ion was only obtained at low discharge voltage. Additionally, fluorine attachment [M + F]- was observed mostly for perfluorinated alkenes. An isotope labeling experiment with 18O2 showed that the primary source of oxygen in the substitution reaction is molecular oxygen, reacting with the analyte in the form of O-• ions. The abundance of [M - F + O]- ions can thus be enhanced by increasing the plasma voltage to produce a higher O-• ion density. The loss of the fluorine (without substitution by oxygen) was mainly observed at high frequency, a fact which can be exploited for tuning the ionization toward specific product ions. Overall, the mechanistic understanding of the ionization of PFCs allowed to increase the selectivity of the product ions, resulting in increased ionization efficiency.

7.
Analyst ; 142(11): 1909-1915, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28443843

ABSTRACT

In this study, a gas chromatography (GC) system was interfaced to a high-resolution Orbitrap mass spectrometer by means of an active capillary plasma ionization source, based on dielectric barrier discharge ionization (DBDI). This allowed highly efficient soft ionization of gas-phase, chromatographically resolved compounds at ambient pressure. Several pesticides and illicit drugs were analyzed, and the limits of detections (LODs) were as low as 30 pg mL-1 for the GC-DBDI-MS coupling (corresponding to 60 fg on-column sensitivity) and 30 fg mL-1 for SPME-GC-DBDI-MS.

8.
J Am Soc Mass Spectrom ; 27(9): 1468-75, 2016 09.
Article in English | MEDLINE | ID: mdl-27380388

ABSTRACT

Active capillary plasma ionization is a highly efficient ambient ionization method. Its general principle of ion formation is closely related to atmospheric pressure chemical ionization (APCI). The method is based on dielectric barrier discharge ionization (DBDI), and can be constructed in the form of a direct flow-through interface to a mass spectrometer. Protonated species ([M + H](+)) are predominantly formed, although in some cases radical cations are also observed. We investigated the underlying ionization mechanisms and reaction pathways for the formation of protonated analyte ([M + H](+)). We found that ionization occurs in the presence and in the absence of water vapor. Therefore, the mechanism cannot exclusively rely on hydronium clusters, as generally accepted for APCI. Based on isotope labeling experiments, protons were shown to originate from various solvents (other than water) and, to a minor extent, from gaseous impurities and/or self-protonation. By using CO2 instead of air or N2 as plasma gas, additional species like [M + OH](+) and [M - H](+) were observed. These gas-phase reaction products of CO2 with the analyte (tertiary amines) indicate the presence of a radical-mediated ionization pathway, which proceeds by direct reaction of the ionized plasma gas with the analyte. The proposed reaction pathway is supported with density functional theory (DFT) calculations. These findings add a new ionization pathway leading to the protonated species to those currently known for APCI. Graphical Abstract ᅟ.

9.
Anal Chem ; 88(14): 7252-8, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27332082

ABSTRACT

We report a new strategy for the direct coupling of Solid-Phase Microextraction (SPME) with mass spectrometry, based on thermal desorption of analytes extracted on the fibers, followed by ionization by a dielectric barrier discharge ionization (DBDI) source. Limits of detection as low as 0.3 pg/mL and a linear dynamic range of ≥3 orders of magnitude were achieved, with a very simple and reproducible approach. Different from direct analysis in real time (DART), desorption electrospray ionization (DESI), or low-temperature plasma (LTP), the desorption of the analytes from the SPME devices in our setup is completely separated from the ionization event. This enhances the reproducibility of the method and minimizes ion suppression phenomena. The analytes were quantitatively transferred from the SPME to the DBDI source, and the use of an active capillary ionization embodiment of the DBDI source greatly enhanced the ion transmission to the MS. This, together with the extraordinary sensitivity of DBDI, allowed subpg/mL sensitivities to be reached and to skip conventional and time-consuming chromatographic separation.

10.
J Am Soc Mass Spectrom ; 27(7): 1197-202, 2016 07.
Article in English | MEDLINE | ID: mdl-27020924

ABSTRACT

An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 µg/m(3) to 6.3 µg/m(3). Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection. Graphical Abstract ᅟ.

11.
Anal Bioanal Chem ; 408(13): 3425-34, 2016 May.
Article in English | MEDLINE | ID: mdl-26898206

ABSTRACT

We report the coupling of nano-liquid chromatography (nano-LC) with an ambient dielectric barrier discharge ionization (DBDI)-based source. Detection and quantification were carried out by high-resolution mass spectrometry (MS), using an LTQ-Orbitrap in full scan mode. Despite the fact that nano-LC systems are rarely used in food analysis, this coupling was demonstrated to deliver extremely high sensitivity in pesticide analysis, with limits of detection (LODs) as low as 10 pg/mL. In all cases, the limits of quantification (LOQs) were compliant with the current EU regulation. An excellent signal linearity over up to four orders of magnitude was also observed. Therefore, this method can easily compete with conventional GC-(EI)-MS or LC-ESI-MS/MS methods and in some cases outperform them. The method was successfully tested for food sample analysis, with apples and baby food, extracted using the QuEChERS approach. Our results demonstrate an outstanding sensitivity (at femtogram level) and reproducibility of the nano-LC-DBDI coupling, capable of improving routine pesticide analysis. To the best of our knowledge, this is the most sensitive and reproducible plasma-MS-based method for pesticide analysis reported to date.


Subject(s)
Chromatography, Liquid/methods , Pesticides/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Limit of Detection , Nanotechnology
12.
Anal Chem ; 87(1): 723-9, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25427190

ABSTRACT

A novel active capillary dielectric barrier discharge plasma ionization (DBDI) technique for mass spectrometry is applied to the direct detection of 13 chemical warfare related compounds, including sarin, and compared to secondary electrospray ionization (SESI) in terms of selectivity and sensitivity. The investigated compounds include an intact chemical warfare agent and structurally related molecules, hydrolysis products and/or precursors of highly toxic nerve agents (G-series, V-series, and "new" nerve agents), and blistering and incapacitating warfare agents. Well-defined analyte gas phase concentrations were generated by a pressure-assisted nanospray with consecutive thermal evaporation and dilution. Identification was achieved by selected reaction monitoring (SRM). The most abundant fragment ion intensity of each compound was used for quantification. For DBDI and SESI, absolute gas phase detection limits in the low ppt range (in MS/MS mode) were achieved for all compounds investigated. Although the sensitivity of both methods was comparable, the active capillary DBDI sensitivity was found to be dependent on the applied AC voltage, thus enabling direct tuning of the sensitivity and the in-source fragmentation, which may become a key feature in terms of field applicability. Our findings underline the applicability of DBDI and SESI for the direct, sensitive detection and quantification of several CWA types and their degradation products. Furthermore, they suggest the use of DBDI in combination with hand-held instruments for CWAs on-site monitoring.

13.
Anal Bioanal Chem ; 406(2): 447-53, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24276252

ABSTRACT

Nitrogen dioxide is a regulated pollutant, which is measured routinely. Since it can be formed during combustion processes, it is often measured in the presence of soot. This study investigates the possible artifact formation due to the interaction of soot and NO2 in the sampling lines and instrument prefilters. The transfer of varying NO2 concentrations through filters and tubes coated with different kinds of soot was investigated by using a dedicated photoacoustic soot and NO2 analyzer (TwinPAS). The effects of flow rate, temperature, relative humidity, tubing respectively filter material, soot reactivity, and passivation on the NO2 measurement artifacts have been investigated. We found significant lags (up to 2 min) of the NO2 transfer as well as total NO2 losses of up 10 %.

14.
Anal Bioanal Chem ; 404(10): 2901-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23052860

ABSTRACT

In this study, we investigated several coatings for high-temperature, high-capacity, and high-efficiency denuder-based NO(2) removal, with the scope to face the harsh conditions and requirements of automotive exhaust gas sampling. As first coating, we propose a potassium iodide (KI)/polyethylene glycol coating with a high removal efficiency (ε > 98%) for about 2 h and 50 ppm NO(2) at room temperature (298 K). At elevated temperatures (423 K), the initial capacity (100 ppmh) is decreased to 15 ppmh. Furthermore, this is the first proposal of the ionic liquid methyl-butyl-imidazolium iodide ([BMIm(+)][I(-)]) as denuder coating material. At room temperature, this ionic liquid exhibits far greater capacity (300 ppmh) and NO(2) removal efficiency (ε > 99.9%) than KI. Nevertheless, KI exhibits a slightly (~10%) higher capacity at elevated temperatures than [BMIm(+)][I(-)]. Both coatings presented are suitable for applications requiring selective denuding of NO(2) at temperatures up to 423 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...