Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Hepatol ; 79(2): 296-313, 2023 08.
Article in English | MEDLINE | ID: mdl-37224925

ABSTRACT

BACKGROUND & AIMS: The progression of non-alcoholic steatohepatitis (NASH) to fibrosis and hepatocellular carcinoma (HCC) is aggravated by auto-aggressive T cells. The gut-liver axis contributes to NASH, but the mechanisms involved and the consequences for NASH-induced fibrosis and liver cancer remain unknown. We investigated the role of gastrointestinal B cells in the development of NASH, fibrosis and NASH-induced HCC. METHODS: C57BL/6J wild-type (WT), B cell-deficient and different immunoglobulin-deficient or transgenic mice were fed distinct NASH-inducing diets or standard chow for 6 or 12 months, whereafter NASH, fibrosis, and NASH-induced HCC were assessed and analysed. Specific pathogen-free/germ-free WT and µMT mice (containing B cells only in the gastrointestinal tract) were fed a choline-deficient high-fat diet, and treated with an anti-CD20 antibody, whereafter NASH and fibrosis were assessed. Tissue biopsy samples from patients with simple steatosis, NASH and cirrhosis were analysed to correlate the secretion of immunoglobulins to clinicopathological features. Flow cytometry, immunohistochemistry and single-cell RNA-sequencing analysis were performed in liver and gastrointestinal tissue to characterise immune cells in mice and humans. RESULTS: Activated intestinal B cells were increased in mouse and human NASH samples and licensed metabolic T-cell activation to induce NASH independently of antigen specificity and gut microbiota. Genetic or therapeutic depletion of systemic or gastrointestinal B cells prevented or reverted NASH and liver fibrosis. IgA secretion was necessary for fibrosis induction by activating CD11b+CCR2+F4/80+CD11c-FCGR1+ hepatic myeloid cells through an IgA-FcR signalling axis. Similarly, patients with NASH had increased numbers of activated intestinal B cells; additionally, we observed a positive correlation between IgA levels and activated FcRg+ hepatic myeloid cells, as well the extent of liver fibrosis. CONCLUSIONS: Intestinal B cells and the IgA-FcR signalling axis represent potential therapeutic targets for the treatment of NASH. IMPACT AND IMPLICATIONS: There is currently no effective treatment for non-alcoholic steatohepatitis (NASH), which is associated with a substantial healthcare burden and is a growing risk factor for hepatocellular carcinoma (HCC). We have previously shown that NASH is an auto-aggressive condition aggravated, amongst others, by T cells. Therefore, we hypothesized that B cells might have a role in disease induction and progression. Our present work highlights that B cells have a dual role in NASH pathogenesis, being implicated in the activation of auto-aggressive T cells and the development of fibrosis via activation of monocyte-derived macrophages by secreted immunoglobulins (e.g., IgA). Furthermore, we show that the absence of B cells prevented HCC development. B cell-intrinsic signalling pathways, secreted immunoglobulins, and interactions of B cells with other immune cells are potential targets for combinatorial NASH therapies against inflammation and fibrosis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Microbiota , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/complications , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Mice, Inbred C57BL , Liver/pathology , Fibrosis , Liver Cirrhosis/complications , Mice, Transgenic , Immunoglobulin A/metabolism , Immunoglobulin A/pharmacology , Disease Models, Animal , Diet, High-Fat/adverse effects
2.
Nat Commun ; 9(1): 887, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29491397

ABSTRACT

Dynamic polarisation of tumour cells is essential for metastasis. While the role of polarisation during dedifferentiation and migration is well established, polarisation of metastasising tumour cells during phases of detachment has not been investigated. Here we identify and characterise a type of polarisation maintained by single cells in liquid phase termed single-cell (sc) polarity and investigate its role during metastasis. We demonstrate that sc polarity is an inherent feature of cells from different tumour entities that is observed in circulating tumour cells in patients. Functionally, we propose that the sc pole is directly involved in early attachment, thereby affecting adhesion, transmigration and metastasis. In vivo, the metastatic capacity of cell lines correlates with the extent of sc polarisation. By manipulating sc polarity regulators and by generic depolarisation, we show that sc polarity prior to migration affects transmigration and metastasis in vitro and in vivo.


Subject(s)
Cell Polarity , Neoplasm Metastasis/physiopathology , Neoplasms/physiopathology , Animals , Cell Line, Tumor , Cell Movement , Female , Humans , Mice, Inbred C57BL , Neoplasm Metastasis/pathology , Neoplasms/pathology , Neoplastic Cells, Circulating/pathology
3.
Cancer Cell ; 32(3): 342-359.e10, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28898696

ABSTRACT

Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in hepatocytes that can act via JNK and subsequent phosphorylation of the histone variant H2AX.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Caspase 8/metabolism , DNA Damage , Liver Neoplasms/enzymology , Liver Neoplasms/pathology , Animals , Apoptosis , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Cellular Senescence , Chronic Disease , Crosses, Genetic , DNA Repair , Fas-Associated Death Domain Protein/metabolism , Female , Genomic Instability , Hepatectomy , Hepatocytes/pathology , Histones/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Liver/metabolism , Liver/pathology , Liver Regeneration , Male , Mice , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Risk Factors
4.
Cardiovasc Res ; 103(2): 206-16, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24920296

ABSTRACT

AIMS: Programmed necrosis (necroptosis) represents a newly identified mechanism of cell death combining features of both apoptosis and necrosis. Like apoptosis, necroptosis is tightly regulated by distinct signalling pathways. A key regulatory role in programmed necrosis has been attributed to interactions of the receptor-interacting protein kinases, RIP1 and RIP3. However, the specific functional role of RIP3-dependent signalling and necroptosis in the heart is unknown. The aims of this study were thus to assess the significance of necroptosis and RIP3 in the context of myocardial ischaemia. METHODS AND RESULTS: Immunoblots revealed strong expression of RIP3 in murine hearts, indicating potential functional significance of this protein in the myocardium. Consistent with a role in promoting necroptosis, adenoviral overexpression of RIP3 in neonatal rat cardiomyocytes and stimulation with TNF-α induced the formation of a complex of RIP1 and RIP3. Moreover, RIP3 overexpression was sufficient to induce necroptosis of cardiomyocytes. In vivo, cardiac expression of RIP3 was up-regulated upon myocardial infarction (MI). Conversely, mice deficient for RIP3 (RIP3(-/-)) showed a significantly better ejection fraction (45 ± 3.6 vs. 32 ± 4.4%, P < 0.05) and less hypertrophy in magnetic resonance imaging studies 30 days after experimental infarction due to left anterior descending coronary artery ligation. This was accompanied by a diminished inflammatory response of infarcted hearts and decreased generation of reactive oxygen species. CONCLUSION: Here, we show that RIP3-dependent necroptosis modulates post-ischaemic adverse remodelling in a mouse model of MI. This novel signalling pathway may thus be an attractive target for future therapies that aim to limit the adverse consequences of myocardial ischaemia.


Subject(s)
Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Cell Death/physiology , Mice, Inbred C57BL , Mitochondria/metabolism , Myocardial Infarction/pathology , Myocardium/metabolism , Myocytes, Cardiac/pathology , Rats, Wistar , Reactive Oxygen Species/metabolism , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/metabolism
5.
Oncotarget ; 3(9): 919-20, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23007072

ABSTRACT

Metastasis is a multistep process characterized by the ability of tumor cells to "communicate" and to interact with their microenvironment to establish tumors in distant organs. A significant proportion of the metastatic microenvironment consists of leukocytes, mostly of the innate immune system, contributing to tumor invasion and outgrowth.


Subject(s)
Neoplasms/metabolism , Neoplasms/pathology , Receptors, Chemokine/metabolism , Cell Communication/physiology , Endothelial Cells/pathology , Humans , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplastic Cells, Circulating/pathology , Tumor Microenvironment/physiology
6.
PLoS One ; 5(12): e15689, 2010 Dec 30.
Article in English | MEDLINE | ID: mdl-21209896

ABSTRACT

BACKGROUND: Haematopoiesis is sustained by haematopoietic (HSC) and mesenchymal stem cells (MSC). HSC are the precursors for blood cells, whereas marrow, stroma, bone, cartilage, muscle and connective tissues derive from MSC. The generation of MSC from umbilical cord blood (UCB) is possible, but with low and unpredictable success. Here we describe a novel, robust stroma-free dual cell culture system for long-term expansion of primitive UCB-derived MSC. METHODS AND FINDINGS: UCB-derived mononuclear cells (MNC) or selected CD34(+) cells were grown in liquid culture in the presence of serum and cytokines. Out of 32 different culture conditions that have been tested for the efficient expansion of HSC, we identified one condition (DMEM, pooled human AB serum, Flt-3 ligand, SCF, MGDF and IL-6; further denoted as D7) which, besides supporting HSC expansion, successfully enabled long-term expansion of stromal/MSC from 8 out of 8 UCB units (5 MNC-derived and 3 CD34(+) selected cells). Expanded MSC displayed a fibroblast-like morphology, expressed several stromal/MSC-related antigens (CD105, CD73, CD29, CD44, CD133 and Nestin) but were negative for haematopoietic cell markers (CD45, CD34 and CD14). MSC stemness phenotype and their differentiation capacity in vitro before and after high dilution were preserved throughout long-term culture. Even at passage 24 cells remained Nestin(+), CD133(+) and >95% were positive for CD105, CD73, CD29 and CD44 with the capacity to differentiate into mesodermal lineages. Similarly we show that UCB derived MSC express pluripotency stem cell markers despite differences in cell confluency and culture passages. Further, we generated MSC from peripheral blood (PB) MNC of 8 healthy volunteers. In all cases, the resulting MSC expressed MSC-related antigens and showed the capacity to form CFU-F colonies. CONCLUSIONS: This novel stroma-free liquid culture overcomes the existing limitation in obtaining MSC from UCB and PB enabling so far unmet therapeutic applications, which might substantially affect clinical practice.


Subject(s)
Cell Culture Techniques/methods , Fetal Blood/cytology , Mesenchymal Stem Cells/cytology , Umbilical Cord/cytology , Antigens, CD34/biosynthesis , Cell-Free System , Cytokines/metabolism , Epidermal Growth Factor/metabolism , Fibroblast Growth Factors/metabolism , Hematopoietic Stem Cells/cytology , Humans , Interleukin-6/metabolism , Membrane Proteins/metabolism , Stem Cell Factor/metabolism , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...