Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Genet ; 53(3): 416-421, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35233794

ABSTRACT

Inherited forms of cataract are a heterogeneous group of eye disorders known in livestock species. Clinicopathological analysis of a single case of impaired vision in a newborn Original Braunvieh calf revealed nuclear cataract. Whole-genome sequencing of the parent-offspring trio revealed a de novo mutation of ADAMTSL4 in this case. The heterozygous p.Arg776His missense variant affects a conserved residue of the ADAMTSL4 gene that encodes a secreted glycoprotein expressed in the lens throughout embryonic development. In humans, ADAMTSL4 genetic variants cause recessively inherited forms of subluxation of the lens. Given that ADAMTSL4 is a functional candidate gene for inherited disorders of the lens, we suggest that heterozygosity for the identified missense variant may have caused the congenital cataract in the affected calf. Cattle populations should be monitored for unexplained cataract cases, with subsequent DNA sequencing a hypothesized pathogenic effect of heterozygous ADAMTSL4 variants could be confirmed.


Subject(s)
Cataract , Cattle Diseases , Animals , Cataract/genetics , Cataract/veterinary , Cattle/genetics , Cattle Diseases/genetics , Mutation, Missense , Pedigree , Whole Genome Sequencing
2.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830323

ABSTRACT

Sporadic occurrence of inherited eye disorders has been reported in cattle but so far pathogenic variants were found only for rare forms of cataract but not for retinopathies. The aim of this study was to characterize the phenotype and the genetic aetiology of a recessive form of congenital day-blindness observed in several cases of purebred Original Braunvieh cattle. Electroretinography in an affected calf revealed absent cone-mediated function, whereas the rods continue to function normally. Brain areas involved in vision were morphologically normal. When targeting cones by immunofluorescence, a decrease in cone number and an accumulation of beta subunits of cone cyclic-nucleotide gated channel (CNGB3) in the outer plexiform layer of affected animals was obvious. Achromatopsia is a monogenic Mendelian disease characterized by the loss of cone photoreceptor function resulting in day-blindness, total color-blindness, and decreased central visual acuity. After SNP genotyping and subsequent homozygosity mapping with twelve affected cattle, we performed whole-genome sequencing and variant calling of three cases. We identified a single missense variant in the bovine CNGB3 gene situated in a ~2.5 Mb homozygous genome region on chromosome 14 shared between all cases. All affected cattle were homozygous carriers of the p.Asp251Asn mutation that was predicted to be deleterious, affecting an evolutionary conserved residue. In conclusion, we have evidence for the occurrence of a breed-specific novel CNGB3-related form of recessively inherited achromatopsia in Original Braunvieh cattle which we have designated OH1 showing an allele frequency of the deleterious allele of ~8%. The identification of carriers will enable selection against this inherited disorder. The studied cattle might serve as an animal model to further elucidate the function of CNGB3 in mammals.


Subject(s)
Alleles , Color Vision Defects/genetics , Cyclic Nucleotide-Gated Cation Channels/genetics , Mutation, Missense , Protein Subunits/genetics , Retinal Cone Photoreceptor Cells/metabolism , Amino Acid Substitution , Animals , Asparagine/metabolism , Aspartic Acid/metabolism , Cattle , Color Vision Defects/diagnostic imaging , Color Vision Defects/metabolism , Color Vision Defects/pathology , Cyclic Nucleotide-Gated Cation Channels/deficiency , Electroretinography , Female , Gene Expression , Gene Frequency , Homozygote , Male , Phenotype , Protein Subunits/deficiency , Retinal Cone Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/metabolism , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...