Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Geobiology ; 11(4): 356-76, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23679065

ABSTRACT

Boiling Springs Lake (BSL) in Lassen Volcanic National Park, California, is North America's largest hot spring, but little is known about the physical, chemical, and biological features of the system. Using a remotely operated vessel, we characterized the bathymetry and near-surface temperatures at sub-meter resolution. The majority of the 1.2 ha, pH 2.2 lake is 10 m deep and 50-52 °C, but temperatures reach 93 °C locally. We extracted DNA from water and sediments collected from warm (52 °C) and hot (73-83 °C) sites separated by 180 m. Gene clone libraries and functional gene microarray (GeoChip 3.0) were used to investigate the BSL community, and uptake of radiolabeled carbon sources was used to assess the relative importance of heterotrophic vs. autotrophic production. Microbial assemblages are similar in both sites despite the strong temperature differential, supporting observations of a dynamic, convectively mixed system. Bacteria in the Actinobacteria and Aquificales phyla are abundant in the water column, and Archaea distantly related to known taxa are abundant in sediments. The functional potential appears similar across a 5-year time span, indicating a stable community with little inter-annual variation, despite the documented seasonal temperature cycle. BSL water-derived DNA contains genes for complete C, N, and S cycles, and low hybridization to probes for N and S oxidation suggests that reductive processes dominate. Many of the detected genes for these processes were from uncultivated bacteria, suggesting novel organisms are responsible for key ecosystem services. Selection imposed by low nutrients, low pH, and high temperature appear to result in low diversity and evenness of genes for key functions involved in C, N, and S cycling. Conversely, organic degradation genes appear to be functionally redundant, and the rapid assimilation of radiolabeled organic carbon into BSL cells suggests the importance of allochthonous C fueling heterotrophic production in the BSL C cycle.


Subject(s)
Biota , Ecosystem , Hot Springs/chemistry , Hot Springs/microbiology , Lakes/chemistry , Lakes/microbiology , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , California , Heterotrophic Processes , Hot Temperature , Hydrogen-Ion Concentration , Metabolic Networks and Pathways/genetics , Metagenome , Microarray Analysis
2.
Biol Bull ; 198(2): 225-44, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10786943

ABSTRACT

The activities of unicellular microbes dominate the ecology of the marine environment, but the chemical signals that determine behavioral interactions are poorly known. In particular, chemical signals between microbial predators and prey contribute to food selection or avoidance and to defense, factors that probably affect trophic structure and such large-scale features as algal blooms. Using defense as an example, I consider physical constraints on the transmission of chemical information, and strategies and mechanisms that microbes might use to send chemical signals. Chemical signals in a low Re, viscosity-dominated physical environment are transferred by molecular diffusion and laminar advection, and may be perceived at nanomolar levels or lower. Events that occur on small temporal and physical scales in the "near-field" of prey are likely to play a role in cell-cell interactions. On the basis of cost-benefit optimization and the need for rapid activation, I suggest that microbial defense system strategies might be highly dynamic. These strategies include compartmented and activated reactions, utilizing both pulsed release of dissolved signals and contact-activated signals at the cell surface. Bioluminescence and extrusome discharge are two visible manifestations of rapidly activated microbial defenses that may serve as models for other chemical reactions as yet undetected due to the technical problems of measuring transient chemical gradients around single cells. As an example, I detail an algal dimethylsulfoniopropionate (DMSP) cleavage reaction that appears to deter protozoan feeding and explore it as a possible model for a rapidly activated, short-range chemical defense system. Although the exploration of chemical interactions among planktonic microbes is in its infancy, ecological models from macroorganisms provide useful hints of the complexity likely to be found.


Subject(s)
Behavior, Animal/physiology , Biological Factors/physiology , Ecosystem , Plankton/physiology , Animals , Appetitive Behavior/physiology , Ecology , Escape Reaction/physiology , Food Chain , Humans , Models, Biological
3.
Appl Microbiol Biotechnol ; 42(6): 951-7, 1995 Mar.
Article in English | MEDLINE | ID: mdl-7766093

ABSTRACT

An aerobic, continuous-flow fluidized-bed reactor was established with inoculum from activated sludge, and fed a mixture of 2,4,6-trichlorophenol (TCP), 2,3,4,6-tetrachlorophenol (TeCP) and pentachlorophenol (PCP) as the sole sources of carbon and energy for 2 years. Experiments with the enrichment were performed with material from the reactor. Later, degradation experiments were completed using pure cultures of bacteria that were isolated from suspended samples of the carrier biofilm. In batch-bottle bioassays, the reactor enrichment degraded PCP, TeCP and TCP both in mineral salts (MS) and tryptone-yeast extract-glucose (TGY) media. ortho-Methoxylated chlorophenols including 4,5-dichloroguaiacol (4,5-DCG), tetrachloroguaiacol (TeCG) and trichlorosyringol (TCS) resisted biodegradation by the enrichment both in MS and TGY media, whereas 5,6-dichlorovanillin (5,6-DCV) was readily transformed to an unidentified metabolite. Experiments with 14C labeled chlorophenols showed mineralization of 2,4-dichlorophenol (DCP) and 2,3,5-TCP to 14CO2 by the enrichment. Material from the suspended biofilm after continuous chlorophenol feeding for 2 years was inoculated onto TGY-agar plates, and showed predominantly two colony types accounting for over 99% of the total colony counts. The two colony types, were equal in abundance. Six Gram-negative, oxidase- and catalase-positive, nonfermentative small rods were isolated in TGY agar media supplemented with 10 mg/l of TeCP or PCP. All isolates formed colonies in TGY plus 150 mg/l of PCP. The isolates degraded TCP and TeCP but not PCP. In mixtures of isolated bacteria the rates of chlorophenol degradation were similar to those observed with individual isolates. Three isolates were identified as Pseudomonas saccharophila and three were an unidentified species of Pseudomonas.


Subject(s)
Chlorophenols/metabolism , Pseudomonas/metabolism , Water Microbiology , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Chlorophenols/chemistry , Minerals/metabolism , Pseudomonas/isolation & purification , Waste Disposal, Fluid
4.
Appl Environ Microbiol ; 59(8): 2723-6, 1993 Aug.
Article in English | MEDLINE | ID: mdl-16349026

ABSTRACT

We examined the effects of a variety of amendments on the consumption of [U-C]dimethyl sulfide in a Georgia salt marsh. Methylated compounds, particularly those with dimethyl groups, significantly inhibited dimethyl sulfide consumption, while nonmethylated substrates had little effect. Dimethyl disulfide and dimethyl ether were the most effective inhibitors tested.

SELECTION OF CITATIONS
SEARCH DETAIL
...